Cropping Area (cropping + area)

Distribution by Scientific Domains


Selected Abstracts


Environment and host-plant genotype effects on the seasonal dynamics of a predatory mite on cassava in sub-humid tropical Africa

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 3 2009
Christine Zundel
Abstract 1,In tropical dry seasons, survival of small arthropods such as predatory mites is often negatively affected by low relative humidity (RH). For species that do not diapause or migrate to refuges, the ability of the habitat to mitigate climatic conditions becomes crucial. 2,The relative effect of macro-habitat (dry grassland hill, humid multiple cropping area, humid riparian forest) and microhabitat (host-plant genotypes with hairy, semi-hairy and glabrous apices) on the seasonal dynamics of the phytoseiid mite Typhlodromalus aripo, a predator of Mononychellus tanajoa on cassava, was examined in a field experiment during a dry season. The effect of RH and plant genotype on T. aripo egg survival was determined in an environment control chamber. 3,Predator abundance was higher in humid multiple cropping areas and on hairy cassava compared with the other habitat types and cassava genotypes. 4,Discriminant and regression analyses showed that the predator's dry season persistence was related to high RH, high plant vigour and hairy apices, but not to prey abundance. 5,In the controlled climate experiment, the effect of host-plant morphology was evident only at the intermediate RH level of 55%. An effect of apex hairiness was not found. 6,It is concluded that the effect of genotype on T. aripo persistence diminishes under low RH conditions, and that supportive effects of apex hairs become effective only in the field, probably through protection from wind and/or intraguild predation. Humid multiple cropping areas planted with hairy and vigorous cassava genotypes are suitable dry season reservoirs for T. aripo. [source]


Fallow cultivation system and farmers' resource management in Niger, West Africa

LAND DEGRADATION AND DEVELOPMENT, Issue 3 2002
A. Wezel
Abstract A survey was carried out in 136 farm-households from seven villages in 1995 and 1996 to analyse the traditional fallow cultivation system in Niger. Farmers were asked to give information about land use on their fields, focusing on cropping and fallow periods as well as on cultivation changes compared to the past. In addition, they were interviewed about their management strategies to maintain or improve soil fertility. Millet-based systems clearly dominate at all sites, either in pure form or intercropped with cowpea, groundnut, sorghum or roselle. At present, almost half of all farmers cultivate their fields on average up to 5 years until it is left fallow. About one-third use their fields permanently. Most farmers use short fallow periods of 1 to 5 years. Moreover, there was a decrease in the cropping area left fallow, and the fallow period also decreased steadily in the past years. In the mid-1970s the average fallow period was about 8 years, decreasing to 2.5 years in 1996. The actual fallow periods are too short to allow sufficient positive effects on soil fertility and farmers are aware of this problem. Consequently, farmers employ different fertilization techniques which aim at maintaining or restoring the soil nutrient pool of the fields while providing physical protection against wind and water erosion. Most farmers use animal manure to improve soil fertility and apply mulch from different sources, millet stalks and branches, for soil regeneration. Few farmers employ other strategies such as mineral fertilizer or planting pits. The farmers try to optimize the use of internal and external resources resulting in a mixture of different fertilization and soil protection methods. Internal resources play by far the most important role. Due to the generally limited resource availability farmers concentrate their management efforts on certain areas within each field or on selected fields only. This means a decreased crop production for the individual household and a higher risk of soil degradation because of soil mining or increased erosion risk on the field area where soil fertility management cannot be practised. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Investments in agricultural water management for poverty reduction in Africa: Case studies of Limpopo, Nile, and Volta river basins

NATURAL RESOURCES FORUM, Issue 3 2008
Munir A. Hanjra
Abstract Much of Sub-Saharan Africa is burdened with water scarcity and poverty. Continentally, less than four percent of Africa's renewable water resources are withdrawn for agriculture and other uses. Investments in agricultural water management can contribute in several ways to achieving the Millennium Development Goals of eradicating extreme poverty and hunger and ensuring environmental sustainability. Increased yield and cropping area and shifts to higher valued crops could help boost the income of rural households, generate more employment, and lower consumer food prices. These investments can also stabilize output, income and employment, and have favourable impacts on education, nutrition and health, and social equity. Investments in agricultural water management can cut poverty by uplifting the entitlements and transforming the opportunity structure for the poor. The overall role of investments in agricultural water management in eradicating hunger and poverty is analyzed. This paper contributes to the present debate and efforts to identify strategies and interventions that can effectively contribute to poverty reduction in Africa. It provides an overview of population growth, malnutrition, income distribution and poverty for countries in three case study river basins , Limpopo, Nile, and Volta. With discussions on the contribution of agriculture to national income and employment generation, the paper explores the linkages among water resources investments, agricultural growth, employment, and poverty alleviation. It examines the potential for expansion in irrigation for vertical and horizontal growth in agricultural productivity, via gains in yield and cropping area to boost the agricultural output. Factors constraining such potential, in terms of scarcity and degradation of land and water resources, and poor governance and weak institutions, are also outlined. The paper argues that increased investments in land and water resources and related rural infrastructure are a key pathway to enhance agricultural productivity and to catalyze agricultural and economic growth for effective poverty alleviation. [source]


The role of seeds and airborne inoculum in the initiation of leaf blotch (Rhynchosporium secalis) epidemics in winter barley

PLANT PATHOLOGY, Issue 2 2010
J. M. Fountaine
Both airborne spores of Rhynchosporium secalis and seed infection have been implied as major sources of primary inoculum for barley leaf blotch (scald) epidemics in fields without previous history of barley cropping. However, little is known about their relative importance in the onset of disease. Results from both quantitative real-time PCR and visual assessments indicated that seed infection was the main source of inoculum in the field trial conducted in this study. Glasshouse studies established that the pathogen can be transmitted from infected seeds into roots, shoots and leaves without causing symptoms. Plants in the field trial remained symptomless for approximately four months before symptoms were observed in the crop. Covering the crop during part of the growing season was shown to prevent pathogen growth, despite the use of infected seed, indicating that changes in the physiological condition of the plant and/or environmental conditions may trigger disease development. However, once the disease appeared in the field it quickly became uniform throughout the cropping area. Only small amounts of R. secalis DNA were measured in 24 h spore-trap tape samples using PCR. Inoculum levels equivalent to spore concentrations between 30 and 60 spores per m3 of air were only detected on three occasions during the growing season. The temporal pattern and level of detection of R. secalis DNA in spore tape samples indicated that airborne inoculum was limited and most likely represented rain-splashed conidia rather than putative ascospores. [source]


Environment and host-plant genotype effects on the seasonal dynamics of a predatory mite on cassava in sub-humid tropical Africa

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 3 2009
Christine Zundel
Abstract 1,In tropical dry seasons, survival of small arthropods such as predatory mites is often negatively affected by low relative humidity (RH). For species that do not diapause or migrate to refuges, the ability of the habitat to mitigate climatic conditions becomes crucial. 2,The relative effect of macro-habitat (dry grassland hill, humid multiple cropping area, humid riparian forest) and microhabitat (host-plant genotypes with hairy, semi-hairy and glabrous apices) on the seasonal dynamics of the phytoseiid mite Typhlodromalus aripo, a predator of Mononychellus tanajoa on cassava, was examined in a field experiment during a dry season. The effect of RH and plant genotype on T. aripo egg survival was determined in an environment control chamber. 3,Predator abundance was higher in humid multiple cropping areas and on hairy cassava compared with the other habitat types and cassava genotypes. 4,Discriminant and regression analyses showed that the predator's dry season persistence was related to high RH, high plant vigour and hairy apices, but not to prey abundance. 5,In the controlled climate experiment, the effect of host-plant morphology was evident only at the intermediate RH level of 55%. An effect of apex hairiness was not found. 6,It is concluded that the effect of genotype on T. aripo persistence diminishes under low RH conditions, and that supportive effects of apex hairs become effective only in the field, probably through protection from wind and/or intraguild predation. Humid multiple cropping areas planted with hairy and vigorous cassava genotypes are suitable dry season reservoirs for T. aripo. [source]