Home About us Contact | |||
Adult Plant Resistance (adult + plant_resistance)
Selected AbstractsVirulence Frequences of Puccinia triticina in Germany and the European Regions of the Russian FederationJOURNAL OF PHYTOPATHOLOGY, Issue 1 2007V. Lind Abstract From 2001 to 2003, leaf rust was collected in different regions of Germany and the Russian Federation to generate single spore isolates and to study the structure of the pathogen populations by analyses of virulence. The virulence of isolates was tested with 38 near-isogenic lines each carrying a different resistance gene. The analyses of variance revealed significant effects for the frequency of virulent isolates, the regions and most interactions with years and regions, but no significance was found for the effects of years. In Germany, an increase of virulence frequencies was detected for Lr1 and Lr2a while a decrease was found for Lr3a, Lr3bg and Lr3ka. Such clear trends did not occur in Russia which may be due to the great agroclimatic differences between regions. The variance of the frequency of virulent isolates was used to estimate adequate sample sizes for the analysis of regional populations of leaf rust. This procedure resulted in more reliable information about the dynamic processes within the pathogen populations. In 2002 and 2003, all pathotypes in Germany had a combined virulence to Lr1, Lr2a, Lr2b, Lr15, Lr17 and Lr20 supplemented by a few other genes. The complexity of virulence was lower in the most frequent pathotypes. In Russia virulence to the alleles at locus Lr3 was very common. Using detached leaf segments in Germany and Russia it turned out that the most virulent pathotypes carry 34 and 32 virulence genes, respectively. Virulence to Lr9, Lr19, Lr24 and Lr38 was rare or even absent. The use of major genes, not overcome by corresponding virulent pathotypes, may contribute to more durable types of resistance in case they are combined with genes having different effects, e.g. adult plant resistance. [source] Histopathology and PR-protein markers provide insight into adult plant resistance to stripe rust of wheatMOLECULAR PLANT PATHOLOGY, Issue 2 2008JENNIFER MOLDENHAUER SUMMARY Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a serious disease of wheat. The spring wheat cultivar Kariega expresses complete adult plant resistance to stripe rust, whereas Avocet S is susceptible. In former studies, quantitative trait loci (QTL) analysis of doubled haploid lines derived from a Kariega × Avocet S cross revealed two major QTL (QYr.sgi-7D and QYr.sgi-2B.1) and two minor QTL (QYr.sgi-1A and QYr.sgi-4A.1) responsible for the adult resistance of Kariega in the field. Avocet S contains none of these QTL. In the present study, stripe rust development was compared, by means of fluorescence and confocal laser scanning microscopy, in flag leaves of Kariega, Avocet S and six doubled haploid (DH) lines, containing all four, none or one QTL. Depending on the QTL present, the infection types of the DH lines ranged from resistant to fully susceptible. No differences in fungal growth were observed during the first 5 days post inoculation (dpi), whereas the mean length of the fungal colonies started to differ at 6 dpi. Interestingly, MP 51 carrying QYr.sgi-7D responded with lignification to the fungal growth without restricting it, whereas MP 35 containing QYr.sgi-2B.1 did not show lignified host tissue, but fungal growth was restricted. RT PCR experiments with sequences of pathogenesis-related (PR) proteins resulted in a slightly stronger induction of PR 1, 2 and 5, known markers for the hypersensitive reaction, and peroxidases in MP 51, whereas a second band for chitinases was detected in MP 35 only. [source] Potential for effective marker-assisted selection of three quantitative trait loci conferring adult plant resistance to powdery mildew in elite wheat breeding populationsPLANT BREEDING, Issue 5 2006D. M. Tucker Abstract Three quantitative trait loci (QTL) associated with adult plant resistance (APR) to powdery mildew (Blumeria graminis) in wheat (Triticum aestivum) cultivar ,Massey' were mapped in a previous study. The three QTL were located on chromosomes 2A, 2B and 1B, and explained 50% of the total phenotypic variation. A 293 recombinant inbred line (RIL) breeding population (UJ) derived from the cross of ,USG 3209', a derivative of ,Massey', and ,Jaypee' was used to evaluate the potential effectiveness of marker-assisted selection (MAS) for APR. Powdery mildew severities of the 293 UJ RILs were evaluated in 2002 (F5 : 6) and 2003 (F6 : 7) under natural disease pressure in the field. The 293 RILs were also evaluated for disease severity in a 2004 (F7 : 8) greenhouse experiment using a composite of five different isolates of B. graminis. Selection of RILs possessing the QTL on chromosome 2A, and to a lesser extent, the one on chromosome 1B was effective in identifying powdery mildew resistance in both greenhouse and field experiments. Overall, selecting RILs with QTL on chromosomes 2A and 2B was most successful in identifying highly resistant RILs, which had mean mildew severities of 4.4% and 3.2% in 2002 and 2003 field experiments, respectively. Breeders implementing MAS programs for APR to powdery mildew via selection of RILs containing the two QTL on chromosomes 2A and 2B likely will obtain RILs having high levels of resistance in the field, however combining all three QTL may ensure greater durability. [source] |