Home About us Contact | |||
Adult Mouse Hippocampus (adult + mouse_hippocampus)
Selected AbstractsHeterogeneity of Kir4.1 channel expression in glia revealed by mouse transgenesisGLIA, Issue 16 2009Xiaofang Tang Abstract The weakly inwardly rectifying K+ channel Kir4.1 is found in many glial cells including astrocytes. However, questions remain regarding the relative contribution of Kir4.1 to the resting K+ conductance of mature astrocytes in situ. We employed a bacterial artificial chromosome transgenic approach in mice to visualize Kir4.1 expression in vivo. These mice (Kir4.1-EGFP) express enhanced green fluorescent protein (EGFP) under the transcriptional control of the Kir4.1 promoter. The brains of adult Kir4.1-EGFP transgenic mice showed co-expression of EGFP and Kir4.1 in astrocytes. In addition, weaker expression of EGFP was detected in NG2+ glial cells when compared with EGFP expression in GFAP+ glial cells. Whole-cell voltage clamp recordings of EGFP+ glial cells in the CA1 area of the adult mouse hippocampus indicated astrocytes displaying properties consistent with both the "passive" and "complex" subpopulations. EGFP+ cells with bright fluorescence had the linear current,voltage (I,V) relationships and extensive gap junctional coupling characteristic of passive astrocytes. However, EGFP+ glia with weaker fluorescence displayed properties associated with complex astrocytes including nonlinear I,V relationships and lack of intercellular gap junctional coupling. Pharmacological blockade of inward currents implied that Kir4.1 channels constitute the dominant resting K+ conductance in both glial cell types and are more highly expressed in passive astrocytes. These results suggest differential expression of Kir4.1 in glia and that this channel likely underlies the resting K+ conductance in passive and complex astrocytes. © 2009 Wiley-Liss, Inc. [source] Neurogenin 3 cellular and subcellular localization in the developing and adult hippocampusTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 10 2010Julia Simon-Areces Abstract Neurogenin 3 (Ngn3), a proneural gene controlled by the Notch receptor, is implicated in the control of dendrite morphology and synaptic plasticity of cultured hippocampal neurons. Here we report the localization and subcellular distribution of Ngn3 in the hippocampus in vivo and in neuronal cultures. In situ hybridization showed Ngn3 mRNA expression in the pyramidal layer and dentate gyrus of adult mouse hippocampus. Immunohistochemistry studies revealed that Ngn3 localization is mostly cytoplasmic in the hippocampal eminence at embryonic day (E)17 and postnatal day (P)0. At P10 it is cytoplasmic in CA1,CA3 pyramidal neurons and nuclear in granule cells of the dentate gyrus. In the adult hippocampus Ngn3 is localized in the nucleus and cytoplasm of both pyramidal neurons and granule cells. During development of cultured hippocampal neurons, Ngn3 mRNA expression is higher at stages of neuronal polarization, as judged by reverse-transcription polymerase chain reaction (RT-PCR), and it is mostly cytoplasmic. The tracking of the subcellular localization of Ngn3 in neurons infected with a virus expressing myc-Ngn3 suggests that the protein is quickly translocated to the cell nucleus after synthesis and then reexported to the cytoplasm. Treatment with leptomycinB, a potent and specific inhibitor of the exportin CRM1, induced its accumulation into the nucleus, suggesting that CRM1 mediates the nuclear export of Ngn3. These results suggest that Ngn3 may play a role in neuronal development by actions in the cytoplasm. J. Comp. Neurol. 518:1814,1824, 2010. © 2009 Wiley-Liss, Inc. [source] A comparative analysis of constitutive and cell-specific promoters in the adult mouse hippocampus using lentivirus vector-mediated gene transferTHE JOURNAL OF GENE MEDICINE, Issue 11 2008Hitoshi Kuroda Abstract Background Viral vectors provide powerful tools for transgene delivery to the mammalian brain to assess the effects of therapeutic proteins, antisense RNAs or small interfering RNAs. A key advantage of such approaches is that specific brain regions implicated in a particular disease can be independently targeted. Methods To optimize transgene expression in sub-regions of the mouse hippocampus and with a view towards devising gene therapy strategies for Alzheimer's disease, we designed lentivirus-based reporter vectors bearing various promoters, including constitutive and cell-specific promoters. Furthermore, we devised methods allowing a side-by-side comparison of transgene expression levels in neural cells both in vitro and in vivo. Results Following stereotaxic injection into the adult mouse hippocampus, titer-adjusted lentiviral vectors bearing constitutive promoters resulted in robust and sub-region-specific transgene expression. Our results show that the human CMV-IE promoter resulted in efficient transgene expression in the entire hippocampus whereas transgene expression mediated by the hybrid hEF1,/HTLV promoter was limited mainly in the dentate gyrus and the CA2/3 region. Finally, the neuron-specific human synapsin I promoter was particularly effective in the dentate gyrus. Conclusions These findings indicate that subregion-specific transgene expression in the hippocampus can be achieved following lentivirus vector-mediated gene transfer. Copyright © 2008 John Wiley & Sons, Ltd. [source] |