Home About us Contact | |||
Adult Mammalian Central Nervous System (adult + mammalian_central_nervous_system)
Selected AbstractsDoublecortin expression levels in adult brain reflect neurogenesisEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2005Sebastien Couillard-Despres Abstract Progress in the field of neurogenesis is currently limited by the lack of tools enabling fast and quantitative analysis of neurogenesis in the adult brain. Doublecortin (DCX) has recently been used as a marker for neurogenesis. However, it was not clear whether DCX could be used to assess modulations occurring in the rate of neurogenesis in the adult mammalian central nervous system following lesioning or stimulatory factors. Using two paradigms increasing neurogenesis levels (physical activity and epileptic seizures), we demonstrate that quantification of DCX-expressing cells allows for an accurate measurement of modulations in the rate of adult neurogenesis. Importantly, we excluded induction of DCX expression during physiological or reactive gliogenesis and excluded also DCX re-expression during regenerative axonal growth. Our data validate DCX as a reliable and specific marker that reflects levels of adult neurogenesis and its modulation. We demonstrate that DCX is a valuable alternative to techniques currently used to measure the levels of neurogenesis. Importantly, in contrast to conventional techniques, analysis of neurogenesis through the detection of DCX does not require in vivo labelling of proliferating cells, thereby opening new avenues for the study of human neurogenesis under normal and pathological conditions. [source] Post-lesion transcommissural growth of olivary climbing fibres creates functional synaptic microzonesEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2003Izumi Sugihara Abstract In the adult mammalian central nervous system, reinnervation and recovery from trauma is limited. During development, however, postlesion plasticity may generate alternate paths, providing models to investigate reinnervating axon,target interactions. After unilateral transection of the neonatal rat olivocerebellar path, axons from the ipsilateral inferior olive grow into the denervated hemicerebellum and develop climbing fibre (CF)-like arbors on Purkinje cells (PCs). However, the synaptic function and extent of PC reinnervation remain unknown. In adult rats pedunculotomized on postnatal day 3 the morphological and electrophysiological properties of reinnervating olivocerebellar axons were studied, using axonal reconstruction and patch-clamp PC recording of CF-induced synaptic currents. Reinnervated PCs displayed normal CF currents, and the frequency of PC reinnervation decreased with increasing laterality. Reinnervating CF arbors were predominantly normal but 6% branched within the molecular layer forming smaller secondary arbors. CFs arose from transcommissural olivary axons, which branched extensively near their target PCs to produce on average 36 CFs, which is six times more than normal. Axons terminating in the hemisphere developed more CFs than those terminating in the vermis. However, the precise parasagittal microzone organization was preserved. Transcommissural axons also branched, although to a lesser extent, to the deep cerebellar nuclei and terminated in a distribution indicative of the olivo-cortico-nuclear circuit. These results show that reinnervating olivocerebellar axons are highly plastic in the cerebellum, compensating anatomically and functionally for early postnatal denervation, and that this reparation obeys precise topographic constraints although axonal plasticity is modified by target (PC or deep nuclear neurons) interactions. [source] Cytokines and neurotrophic factors fail to affect Nogo-A mRNA expression in differentiated human neurones: implications for inflammation-related axonal regeneration in the central nervous systemNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 2 2002J.-I. Satoh Nogo is a novel myelin-associated inhibitor of neurite outgrowth which regulates stable neuronal connections during axonal regeneration following injury in the adult mammalian central nervous system (CNS). Because cytokines and neurotrophic factors play a key role in inflammation-related axonal regeneration, we investigated: (i) the constitutive expression of Nogo and the Nogo receptor (NgR) mRNA in human neural cell lines; (ii) Nogo and NgR mRNA levels in the NTera2 human teratocarcinoma cell line during retinoic acid (RA)-induced neuronal differentiation; and (iii) their regulation in NTera2-derived differentiated neurones (NTera2-N) after exposure to a battery of cytokines and growth factors potentially produced by activated glial cells at post-traumatic inflammatory lesions in the CNS. By reverse transcriptase-polymerase chain reaction analysis, the constitutive expression of Nogo-A, the longest isoform of three distinct Nogo transcripts and NgR mRNA was identified in a wide variety of human neural and non-neural cell lines. By Northern blot analysis, the levels of Nogo-A mRNA were elevated markedly in NTera2 cells following RA-induced neuronal differentiation, accompanied by an increased expression of the neurite growth-associated protein GAP-43 mRNA. In contrast, Nogo-A, Nogo-B, NgR and GAP-43 mRNA levels were unaltered in NTera2-N cells by exposure to basic fibroblast growth factor, brain-derived neurotrophic factor, glia-derived neurotrophic factor, tumour necrosis factor-,, interleukin-1,, dibutyryl cyclic AMP or phorbol 12-myristate 13-acetate. These results indicate that both Nogo-A and NgR mRNA are coexpressed in various human cell types, including differentiated neurones, where their expression is unaffected by exposure to a panel of cytokines and neurotrophic factors which might be involved in inflammation-related axonal regeneration in the CNS. [source] Direct Stimulation of Adult Neural Stem Cells In Vitro and Neurogenesis In Vivo by Vascular Endothelial Growth FactorBRAIN PATHOLOGY, Issue 3 2004Anne Schänzer Hypoxia as well as global and focal ischemia are strong activators of neurogenesis in the adult mammalian central nervous system. Here we show that the hypoxia-inducible vascular endothelial growth factor (VEGF) and its receptor VEGFR-2/Flk-1 are expressed in clonally-derived adult rat neural stem cells in vitro. VEGF stimulated the expansion of neural stem cells whereas blockade of VEGFR-2/Flk-1-kinase activity reduced neural stem cell expansion. VEGF was also infused into the lateral ventricle to study changes in neurogenesis in the ventricle wall, olfactory bulb and hippocampus. Using a low dose (2.4 ng/d) to avoid endothelial proliferation and changes in vascular permeability, VEGF stimulated adult neurogenesis in vivo. After VEGF infusion, we observed reduced apoptosis but unaltered proliferation suggesting a survival promoting effect of VEGF in neural progenitor cells. Strong expression of VEGFR-2/Flk-1 was detected in the ventricle wall adjacent to the choroid plexus, a site of significant VEGF production, which suggests a paracrine function of endogenous VEGF on neural stem cells in vivo. We propose that VEGF acts as a trophic factor for neural stem cells in vitro and for sustained neurogenesis in the adult nervous system. These findings may have implications for the pathogenesis and therapy of neurodegenerative diseases. [source] |