Adult Human Articular Chondrocytes (adult + human_articular_chondrocyte)

Distribution by Scientific Domains


Selected Abstracts


Tachykinin expression in cartilage and function in human articular chondrocyte mechanotransduction

ARTHRITIS & RHEUMATISM, Issue 1 2003
S. J. Millward-Sadler
Objective To assess whether substance P and the corresponding neurokinin 1 (NK1) receptor are expressed in human articular cartilage, and whether these molecules have a role in chondrocyte mechanotransduction. Methods Transgenic studies, immunohistochemistry, Western blotting, and reverse transcriptase,polymerase chain reaction were used to assess the expression of the preprotachykinin (PPT) gene, substance P, and NK1 in developing mice, in adult human articular cartilage, and in human chondrocytes in culture. Chondrocytes obtained from PPT knockout mice and human articular chondrocytes were mechanically stimulated in the presence or absence of inhibitors of substance P signaling, and cell membrane potentials or relative levels of aggrecan messenger RNA (mRNA) were measured. Results Replacing a region of the PPT gene transcriptional site that contains a dominant repressor of the proximal promoter activity with the constitutive minimal promoter of the human ,-globin promoter allowed expression of a marker gene in areas of chondrogenesis during mouse development and in adult chondrocytes grown in culture. Adult human articular chondrocytes expressed endogenous PPT mRNA, substance P, and the corresponding NK1 receptor in vivo and in vitro. Blockade of substance P signaling by a chemical antagonist to the NK1 receptor inhibited chondrocyte responses to mechanical stimulation. Conclusion Substance P is expressed in human articular cartilage and is involved in chondrocyte mechanotransduction via the NK1 receptor in an autocrine and paracrine manner. This suggests that substance P and the NK1 receptor have roles in the maintenance of articular cartilage structure and function that were previously unrecognized. [source]


Experimental and mathematical study of the influence of growth factors on the growth kinetics of adult human articular chondrocytes,

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2005
Andrea Barbero
This study aimed at determining how kinetic parameters of adult human articular chondrocytes (AHAC) growth are modulated by the growth factor combination TGF,1, FGF-2, and PDGF BB (TFP), recently shown to stimulate AHAC proliferation. AHAC, isolated from cartilage biopsies of three individuals, were cultured in medium without (CTR) or with TFP. For growth curves, AHAC were seeded at 1,000 cells/cm2 and cultured for 12 days, with cell numbers measured fluorimetrically in the same wells every 12 h. For microcolony tests, AHAC were seeded at 2.5 cells/cm2 and cultured for 6 days, with cell numbers determined for each microcolony by phase contrast microscopy every 8 h. A mathematical model combining delay and logistic equations was developed to capture the growth kinetic parameters and to enable the description of the complete growth process of the cell culture. As compared to CTR medium, the presence of TFP increased the number of cells/well starting from the fifth day of culture, and a four-fold larger cell number was reached at confluency. For single microcolonies, TFP reduced the time for the first cell division by 26.6%, the time for subsequent cell divisions (generation time) by 16.8%, and the percentage of quiescent cells (Qc) by 42.5%. The mathematical model fitted well the experimental data of the growth kinetic. Finally, using both microcolony tests and the mathematical model, we determined that prolonged cell expansion induces an enrichment of AHAC with shorter first division time, but not of those with shorter generation time. © 2005 Wiley-Liss, Inc. [source]


Quantification of expression levels of cellular differentiation markers does not support a general shift in the cellular phenotype of osteoarthritic chondrocytes

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 1 2003
Pia Margarethe Gebhard
Abstract Many studies have shown increased anabolic activity in osteoarthritic cartilage and have suggested changes in the cellular phenotypes of articular chondrocytes. Most of these studies relied on non-quantitative technologies, which did not allow the estimation of the relative importance of the different differentiation phenomena. In the present study, we developed and used quantitative PCR assays for collagen types I, II(total), IIA, III, and X as marker genes indicating cellular synthetic activity (collagen type II) as well as differentiation pattern of chondrocytes (collagen types I, IIA, III, and X) and quantified these genes in normal, early degenerative, and late stage osteoarthritic cartilage in parallel. At first sight, our results confirmed previously published data showing hardly any expression of collagen genes in normal and significantly enhanced expression in osteoarthritic cartilage. This included collagen types II, III, and IIA, but also collagen types I(,1) and X. However, if one considers the ratios of the various markers of chondrocytic differentiation in comparison to collagen type II, the main synthetic product of differentiated chondrocytes, no shift in the cellular phenotype was detectable. In fact, expression ratios remained constant or were even decreased in osteoarthritic cartilage. Our results confirm that normal adult human articular chondrocytes display hardly any expression activity of the collagen types investigated, whereas osteoarthritic chondrocytes show very increased synthetic activity. The largely unchanged ratios of collagen subtypes investigated indicate that no general shift in the cellular phenotype does occur in osteoarthritic cartilage as suggested by previous investigations. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source]


Effect of cell seeding concentration on the quality of tissue engineered constructs loaded with adult human articular chondrocytes

JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, Issue 1 2008
Sebastian Concaro
Abstract Many aspects of the process of in vitro differentiation of chondrocytes in three-dimensional (3D) scaffolds need to be further investigated. Chitosan scaffolds were produced by freeze-drying 3% w/v 90% DDA chitosan gels. The effect of the cell seeding concentration was evaluated by culturing human adult chondrocytes in chitosan scaffolds After the first passage, cells were seeded into chitosan scaffolds with a diameter of 8 mm. The final cell seeding concentration per cm3 of chitosan scaffold was: Group A, 3 × 106; Group B, 6 × 106; Group C, 12 × 106; and Group D, 25 × 106 cells. After 14 and 28 days in 3D culture, the constructs were assesed for collagen, glucosaminoglycans and DNA content. The mechanical properties of the constructs were determined using a dynamic oscillatory shear test. The histological aspect of the constructs was evaluated using the Bern score. The collagen and GAG concentration increased, varying the cell seeding concentration. There was a significant increase in proteoglycan and hydroxyproline production between groups C and D. The sulphated GAG content increased significantly in the group D as compared to the other groups. The mechanical properties of the different constructs increased over time, from 9.6 G,/kPa at 14 days of 3D culture to 14.6 G,/kPa at 28 days under the same culture conditions. In this study we were able to determine that concentrations of 12,25 million cells/cm2 are needed to increase the matrix production and mechanical properties of human adult chondrocytes under static conditions. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Effect of interleukin-1, on osteogenic protein 1,induced signaling in adult human articular chondrocytes

ARTHRITIS & RHEUMATISM, Issue 1 2009
Amel M. Elshaier
Objective Two major receptor-activated Smad (R-Smad) signaling pathways, bone morphogenetic protein (BMP) and MAPK, were examined in a model of interleukin-1, (IL-1,),induced cartilage degeneration to investigate the effect of IL-1, on osteogenic protein 1 (OP-1) signaling in adult human articular chondrocytes. Methods Chondrocytes from the ankles of 26 normal human donors were cultured in high-density monolayers in serum-free medium. The effect of IL-1, on BMP receptors was studied by reverse transcription,polymerase chain reaction and flow cytometry. Phosphorylation of R-Smads was tested in cells treated with IL-1, (10 ng/ml), OP-1 (100 ng/ml), or the combination of IL-1, and OP-1. Cell lysates were analyzed by Western blotting with polyclonal antibodies against 2 R-Smad phosphorylation sites (BMP- and MAPK-mediated) or with total, nonphosphorylated R-Smad as a control. To identify which MAPKs play a role in IL-1, activation of the linker region, chondrocytes were preincubated with specific MAPK inhibitors (PD98059 for MAP/ERK, SP600125 for JNK, and SB203580 for p38). Results IL-1, reduced the number of activin receptor,like kinase 2 (ALK-2) and ALK-3 receptors, inhibited expression of Smad1 and Smad6, delayed and prematurely terminated the onset of OP-1,mediated R-Smad phosphorylation, and affected nuclear translocation of R-Smad/Smad4 complexes. The alternative phosphorylation of R-Smad in the linker region via the MAPK pathway (primarily p38 and JNK) was observed to be a possible mechanism through which IL-1, offsets OP-1 signaling and the response to OP-1. Conversely, OP-1 was found to directly inhibit phosphorylation of p38. Conclusion These findings describe new mechanisms of the crosstalk between OP-1 and IL-1, in chondrocytes. The study also identifies potential targets for therapeutic interventions in the treatment of cartilage-degenerative processes. [source]


Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes

ARTHRITIS & RHEUMATISM, Issue 5 2003
Andrea Barbero
Objective To investigate whether adult human articular chondrocytes (AHACs), dedifferentiated by monolayer expansion, can differentiate toward diverse mesenchymal lineages and, if so, whether this ability is regulated by growth factors during monolayer expansion. Methods AHACs were expanded as multiclonal or clonal populations in medium without (control) or with factors enhancing cell dedifferentiation (transforming growth factor ,1, fibroblast growth factor 2, and platelet-derived growth factor type BB [TFP]). Cells were then cultured under conditions promoting chondrogenic, osteogenic, or adipogenic differentiation, and the acquired phenotypes were assessed histologically, biochemically, and by real-time reverse transcriptase,polymerase chain reaction. Results Multiclonal populations of both control- and TFP-expanded AHACs differentiated toward the chondrogenic, osteogenic, and adipogenic lineages. Compared with control-expanded AHACs, TFP-expanded cells displayed enhanced chondrogenic differentiation capacity (2.4-fold higher glycosaminoglycan/DNA content and 2,500-fold higher up-regulation of type II collagen) and osteogenic differentiation capacity (9.4-fold higher increase in alkaline phosphatase activity and 12.4-fold higher up-regulation of bone sialoprotein), but reduced formation of adipocytes (5.2-fold lower oil red O,positive cells/area). Clonal populations of AHACs could be efficiently expanded in TFP, but not in control medium. Most TFP-expanded clones were able to redifferentiate only into chondrocytes (7 of 20) or were unable to differentiate (6 of 20). However, some clones (2 of 20) differentiated toward all of the lineages investigated, thus displaying characteristics of mesenchymal progenitor cells. Conclusion Dedifferentiated AHACs exhibit differentiation plasticity, which is modulated by growth factors used during monolayer expansion and is highly heterogeneous across different clones. Clonal culture of AHACs in the presence of regulatory molecules could lead to the identification of AHAC subpopulations with enhanced cartilage repair capacity. [source]