Home About us Contact | |||
Adult Female Rats (adult + female_rat)
Selected AbstractsModerate Alcohol Consumption Suppresses Bone Turnover in Adult Female RatsJOURNAL OF BONE AND MINERAL RESEARCH, Issue 3 2001R. T. Turner Abstract Chronic alcohol abuse is a major risk factor for osteoporosis but the effects of moderate drinking on bone metabolism are largely uninvestigated. Here, we studied the long-term dose-response (0, 3, 6, 13, and 35% caloric intake) effects of alcohol on cancellous bone in the proximal tibia of 8-month-old female rats. After 4 months of treatment, all alcohol-consuming groups of rats had decreased bone turnover. The inhibitory effects of alcohol on bone formation were dose dependent. A reduction in osteoclast number occurred at the lowest level of consumption but there were no further reductions with higher levels of consumption. An imbalance between bone formation and bone resorption at higher levels of consumption of alcohol resulted in trabecular thinning. Our observations in rats raise the concern that moderate consumption of alcoholic beverages in humans may reduce bone turnover and potentially have detrimental effects on the skeleton. [source] Enhanced Anticonvulsant Activity of Neuroactive Steroids in a Rat Model of Catamenial EpilepsyEPILEPSIA, Issue 3 2001Doodipala S. Reddy Summary: ,Purpose: Perimenstrual catamenial epilepsy may in part be due to withdrawal of the endogenous progesterone-derived neurosteroid allopregnanolone that potentiates ,-aminobutyric acidA (GABAA) receptor,mediated inhibition. Here we sought to determine whether the anticonvulsant potencies of neuroactive steroids, benzodiazepines, phenobarbital (PB), and valproate (VPA) are altered during the heightened seizure susceptibility accompanying neurosteroid withdrawal in a rat model of perimenstrual catamenial epilepsy. Methods: Test drugs were evaluated for their ability to alter the convulsant activity of pentylenetetrazol (PTZ) in young adult female rats, in pseudopregnant rats with prolonged exposure to high levels of progesterone (and its neurosteroid metabolites), and in pseudopregnant rats 24 h after acute withdrawal of neurosteroids by treatment with the 5,-reductase inhibitor finasteride. Test drugs were administered at doses equivalent to twice their ED50 values for protection against PTZ-induced clonic seizures in naive young adult female rats. Results: The anticonvulsant activity of allopregnanolone (5 mg/kg, s.c.), pregnanolone (5 mg/kg, s.c.), allotetrahydrodeoxycorticosterone (15 mg/kg, s.c.), and tetrahydrodeoxycorticosterone (10 mg/kg, s.c.) were enhanced by 34,127% after neurosteroid withdrawal. The anticonvulsant activity of PB (65 mg/kg, i.p.) was also enhanced by 24% in neurosteroid-withdrawn animals. In contrast, the anticonvulsant activity of diazepam (4 mg/kg, i.p.), bretazenil (0.106 mg/kg, i.p.), and VPA (560 mg/kg, i.p.) were reduced or unchanged in neurosteroid-withdrawn animals. Conclusions: The anticonvulsant activity of neuroactive steroids is potentiated after neurosteroid withdrawal, supporting the use of such agents in the treatment of perimenstrual catamenial epilepsy. [source] Sexual dimorphism in the spontaneous recovery from spinal cord injury: a gender gap in beneficial autoimmunity?EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2002Ehud Hauben Abstract Immune cells have been shown to contribute to spontaneous recovery from central nervous system (CNS) injury. Here we show that adult female rats and mice recover significantly better than their male littermates from incomplete spinal cord injury (ISCI). This sexual dimorphism is wiped out and recovery is worse in adult mice deprived of mature T cells. After spinal cord contusion in adult rats, functional recovery (measured by locomotor scores in an open field) was significantly worse in females treated with dihydrotestosterone prior to the injury than in placebo-treated controls, and significantly better in castrated males than in their noncastrated male littermates. Post-traumatic administration of the testosterone receptor antagonist flutamide promoted the functional recovery in adult male rats. These results, in line with the known inhibitory effect of testosterone on cell-mediated immunity, suggest that androgen-mediated immunosuppression plays a role in ISCI-related immune dysfunction and can therefore partly explain the worse outcome of ISCI in males than in female. We suggest that females, which are more prone to develop autoimmune response than males, benefit from this response in cases of CNS insults. [source] Protein Undernutrition-Induced Bone Loss Is Associated with Decreased IGF-I Levels and Estrogen DeficiencyJOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2000Patrick Ammann M.D. Abstract Protein undernutrition is a known factor in the pathogenesis of osteoporotic fracture in the elderly, but the mechanisms of bone loss resulting from this deficiency are still poorly understood. We investigated the effects of four isocaloric diets with varying levels of protein content (15, 7.5, 5, and 2.5% casein) on areal bone mineral density (BMD), bone ultimate strength, histomorphometry, biochemical markers of bone remodeling, plasma IGF-I, and sex hormone status in adult female rats. After 16 weeks on a 2.5% casein diet, BMD was significantly decreased at skeletal sites containing trabecular or cortical bone. Plasma IGF-I was decreased by 29,34% and no estrus sign in vaginal smear was observed. To investigate the roles of estrogen deficiency and protein undernutrition, the same protocol was used in ovariectomized (OVX) or sham-operated (SHAM) rats, pair-fed isocaloric diets containing either 15 or 2.5% casein. Trabecular BMD was decreased by either manipulation, with effects appearing to be additive. Cortical BMD was decreased only in rats on a low-protein diet. This was accompanied by an increased urinary deoxypyridinoline excretion without any change in osteocalcin levels, suggesting an uncoupling between resorption and formation. Isocaloric protein undernutrition decreased bone mineral mass and strength. This effect might be related to decreased plasma IGF-I and/or estrogen deficiency with a consequent imbalance in bone remodeling. [source] Reduced alpha adrenergic mediated contraction of renal preglomerular blood vessels as a function of gender and agingJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2005John C. Passmore Abstract As human males age, a decline in baroreflex-mediated elevation of blood pressure occurs due, at least in part, to a reduction in alpha-1 adrenergic vasoconstrictor function. Alpha adrenergic constriction is mediated by guanosine triphosphate binding Protein (G Protein) coupled signaling pathways. Alpha-1 A/C, B, and D adrenergic receptor expressions, measured by GeneChip array, are not reduced during aging in renal blood vessels of male or female rats. Alpha-1 A GeneChip expression is greater, at all ages studied, in females than in males. Prazosin binding by alpha-1 adrenergic receptors is greater in young adult female rats than in young adult male rats; however, it is reduced with aging in both male and female rats. G alpha q GeneChip expression declines while expression of adrenergic receptor kinase (GRK2) and tyrosine phosphatases (TyrP) increase with aging in male rats. The declines in alpha-1 adrenergic receptor binding and G alpha q expression and also the increases in GRK2 and TyrP expression likely relate to the age-related decline of vasoconstriction in male rats. The information that the expression of alpha-1 A adrenergic receptors is greater in female rats and (GRK2) expression does not increase during aging could relate to the gender differences in vasoconstrictor function with aging. Gene therapy to ameliorate the age-related decline in renal function could possibly reduce the need for renal dialysis. Signaling pathways such as those reviewed herein may provide an outline of the molecular pathways needed to move toward successful renal gene therapy for aging individuals. J. Cell. Biochem. © 2005 Wiley-Liss, Inc. [source] Masculinizing Effect of Dihydrotestosterone on Growth Hormone Secretion is Inhibited in Ovariectomized Rats with Anterolateral Deafferentation of the Medial Basal Hypothalamus or in Intact Female RatsJOURNAL OF NEUROENDOCRINOLOGY, Issue 4 2000Tamura There is a striking sex difference in the pattern of growth hormone (GH) secretion in rats. Our previous studies showed that short-term administration of pharmacological doses of testosterone or dihydrotestosterone (DHT) masculinized the GH secretory pattern in ovariectomized (OVX) rats. The locus where testosterone or DHT interacts with the somatotropic axis is believed to be the hypothalamus. To obtain insights into this phenomenon, we administered a single dose of DHT s.c. to adult OVX rats at 0.01, 0.1 or 1 mg/rat. Blood GH concentrations were measured in unanaesthetized rats. Six to12 h after the s.c. administration of all three doses of DHT, the GH secretory pattern revealed a male-like secretory pattern as shown by episodic bursts occurring at 2,3-h intervals with low or undetectable trough levels. When anterolateral deafferentation of the medial basal hypothalamus (ALC) was performed, the blood concentrations revealed irregularly occurring small fluctuations, instead of the usual high bursts, but the basal GH concentration was significantly higher than that of OVX-sham-operated rats. DHT treatment did not elicit pulsatile GH secretion or alter GH concentrations in OVX rats with ALC. When intact adult female rats received DHT at a dose of 1 mg/rat, the male-like GH secretory pattern was not induced. These results suggest that neural inputs from the anterolateral direction to the medial basal hypothalamus are necessary for the masculinizing effect of DHT on the GH secretory pattern in OVX rats, and that oestrogen in intact female rats prevents the masculinizing effect of DHT. [source] Nicotine Decreases Blood Alcohol Concentrations in Adult Rats: A Phenomenon Potentially Related to Gastric FunctionALCOHOLISM, Issue 8 2006Scott E. Parnell Background: In spite of the fact that drinking and smoking often occur together, little is known about the pharmacokinetic interaction between alcohol and nicotine. Previous research in neonatal rats demonstrated that nicotine reduces blood alcohol concentrations (BACs) if alcohol and nicotine are administered simultaneously. However, it is unclear whether such a phenomenon can be observed in adult subjects, given the fact that there is an ontogenetic difference in alcohol metabolism. Methods: A range of nicotine doses (0, 0.25, 0.5, 1, 2, 4, and 6 mg/kg) were administered individually with an alcohol dose (4 g/kg) via intragastric (IG) intubation to adult female rats, and the resultant BACs were measured at various time points following drug administration. Furthermore, the hypothesis that nicotine's role in reducing BACs is mediated through factors related to gastric function was examined by comparing the resultant BACs after an IG intubation or intraperitoneal (IP) injection of alcohol. Results: The results from this study showed significant nicotine dose,related decreases in BACs with 0.5, 1, 2, 4, and 6 mg/kg doses of nicotine at the various time points assessed. This effect, however, occurred only when alcohol was administered via IG intubation, but not after an IP injection of alcohol. Conclusions: These results suggest that the nicotine-induced decrease in BAC may be related to gastric function. One possible explanation was related to nicotine's action in delaying gastric emptying. The longer the alcohol was retained in the stomach, the more likely that the alcohol would be metabolized by gastric alcohol dehydrogenase before its absorption into the bloodstream by the small intestine (the major site of alcohol absorption). [source] |