Adirondack Mountains (adirondack + mountain)

Distribution by Scientific Domains


Selected Abstracts


Hydrothermal alteration of late- to post-tectonic Lyon Mountain Granitic Gneiss, Adirondack Mountains, New York: Origin of quartz,sillimanite segregations, quartz,albite lithologies, and associated Kiruna-type low-Ti Fe-oxide deposits

JOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2002
J. Mclelland
Abstract Quartz,sillimanite segregations, quartz,albite lithologies (Ab95,98), and Kiruna-type low-Ti iron-oxide deposits are associated with late- to post-tectonic (c. 1055 Ma) leucogranites of Lyon Mountain Gneiss (LMG) in the Adirondack Mountains, New York State. Most recent interpretations of these controversial features, which are global in occurrence, favour hydrothermal origins in agreement with results presented here. Field relations document that quartz,sillimanite veins and nodules cut, and therefore post-date, emplacement of host LMG leucogranites. Veins occur in oriented fracture networks, and aligned trains of nodules are interpreted as disrupted early veins. Late dykes of leucogranite cut veins and nodules demonstrating formation prior to terminal magmatism. Veins and nodules consist of sillimanite surrounded by quartz that commonly embays wall-rock feldspar indicating leaching of Na and K from LMG feldspar by acidic hydrothermal fluids. Subsequent, and repeated, ductile flow disrupted earlier veins into nodular fragments but produced little grain shape fabric. Geochemical and petrographic studies of quartz,albite rock indicate that it formed through metasomatic replacement (albitization) of LMG microperthite by sodic hydrothermal fluids that resulted in diagnostic checkerboard albite. Low-Ti iron-oxide ores are commonly associated with the quartz,albite sub-unit, and it is proposed that hydrothermal fluids related to albitization transported Fe as well. The regional extent of sodic alteration suggests large quantities of surface-derived hydrothermal fluids. Fluid inclusion and oxygen isotope data are consistent with high temperature, regionally extensive fluids consisting primarily of evolved surface-derived brines enriched in Na and Cl. Quartz,sillimanite veins and nodules, which are significantly more localised phenomena and require acidic fluids, were most likely formed from local magmatic fluids in the crystallizing carapaces of LMG plutons. [source]


Ice-storm disturbance and long-term forest dynamics in the Adirondack Mountains

JOURNAL OF VEGETATION SCIENCE, Issue 2 2004
Charles W. Lafon
Ice storms cause periodic disturbance to temperate forests of eastern North America. They are the primary agents of disturbance in some eastern forests. In this paper, a forest gap model is employed to explore consequences of ice storms for the long-term dynamics of Tsuga canadensis-northem hardwoods forests. The gap model LINKAGES was modified to simulate periodic ice storm disturbance in the Adirondack Mountains of New York. To adapt the gap model for this purpose, field data on ice storm disturbance are used to develop a polytomous logistic regression model of tree damage. The logistic regression model was then incorporated into the modified forest gap model, LINK ADIR, to determine the type of damage sustained by each simulated tree. The logistic regression model predicts high probabilities of bent boles or severe bole damage (leaning, snapping, or uprooting) in small-diameter trees, and increasing probability of canopy damage as tree size increases. Canopy damage is most likely on gentle slopes; the probability of severe bole damage increases with increasing slope angle. In the LINKADIR simulations, tree damage type determines the probability of mortality; trees with severe bole damage are assigned the highest mortality rate. LINKADIR predicts Tsuga canadensis dominance in mesophytic old-growth forests not disturbed by ice storms. When ice storms are simulated, the model predicts Acer saccharum -dominated forests with higher species richness. These results suggest that ice storms may function as intermediate disturbances that enhance species richness in forested Adirondack landscapes. [source]


Anomalous seaward dip of the lithosphere,asthenosphere boundary beneath northeastern USA detected using differential-array measurements of Rayleigh waves

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2002
William Menke
Summary Rayleigh wave phase velocities and azimuth anomalies in the period range of 30,100 s are measured for a set of four triangular arrays of broad-band seismometers in coastal northeastern USA. This is a region in which a strong upper mantle slow shear velocity anomaly (a ,New England Anomaly'), crosses the continental margin. Earthquakes from a wide range of directions are used to detect the variation of parameters with azimuth, ,, of propagation. No lateral heterogeneity in phase velocity is detected at these periods between stations at the centre and the edge of the Anomaly. However, large (10,20; per cent) azimuthal variations occur, and have a cos(1,) dependence, which is indicative of a dipping structure in the upper mantle. Corresponding azimuth variations, with a magnitude of ±5°, are also detected. This behaviour is consistent with a southeasterly (N150°E) dip of the lithosphere,asthenosphere boundary beneath New England. This dip is associated with the shoaling of the New England Anomaly beneath the Adirondack mountains, west of the array. It is opposite to the dip associated with lithospheric thickening toward the interior of the craton. [source]