Home About us Contact | |||
Adipocyte Size (adipocyte + size)
Selected AbstractsInfluence of herring (Clupea harengus) and herring fractions on metabolic status in rats fed a high energy dietACTA PHYSIOLOGICA, Issue 3 2009H. Lindqvist Abstract Aim:, Few dietary studies have looked beyond fish oil to explain the beneficial metabolic effects of a fish-containing diet. Our aim was to study whether addition of herring, or sub-fractions of herring, could counteract negative metabolic effects known to be induced by a high-fat, high-sugar diet. Methods:, Rats were given six different diets: standard pellets; high energy diet with chicken mince (HiE control); high energy diet with herring mince (HiE herring); and high energy diet with chicken mince and either herring oil (HiE herring oil), herring press juice, PJ (HiE PJ) or herring low molecular weight PJ (HiE LMW-PJ). Factors associated with the metabolic syndrome were measured. Results:, There were no differences in energy intake or body weight between the groups, but animals fed high energy diets had a higher body fat content compared with the pellet group, although not statistically significant in all groups. Mesenteric adipocyte size was smaller in the HiE herring oil group compared with the HiE control. Glucose clamp studies showed that, compared with the pellet group, the HiE control and HiE herring diets, but not the HiE herring oil diet, induced insulin resistance. Addition of herring or herring oil to the high energy diet decreased total cholesterol levels, triacylglycerols and the atherogenic index compared with the HiE control group. Conclusions:, The results suggest that addition of herring or herring oil counteracts negative effects on blood lipids induced by a high energy diet. The lipid component of herring thus seems to be responsible for these beneficial effects. [source] Long-term Infusion of Brain-Derived Neurotrophic Factor Reduces Food Intake and Body Weight via a Corticotrophin-Releasing Hormone Pathway in the Paraventricular Nucleus of the HypothalamusJOURNAL OF NEUROENDOCRINOLOGY, Issue 9 2010M. Toriya Brain-derived neurotrophic factor (BDNF) has been implicated in learning, depression and energy metabolism. However, the neuronal mechanisms underlying the effects of BDNF on energy metabolism remain unclear. The present study aimed to elucidate the neuronal pathways by which BDNF controls feeding behaviour and energy balance. Using an osmotic mini-pump, BDNF or control artificial cerebrospinal fluid was infused i.c.v. at the lateral ventricle or into the paraventricular nucleus of the hypothalamus (PVN) for 12 days. Intracerebroventricular BDNF up-regulated mRNA expression of corticotrophin-releasing hormone (CRH) and urocortin in the PVN. TrkB, the receptor for BDNF, was expressed in the PVN neurones, including those containing CRH. Both i.c.v. and intra-PVN-administered BDNF decreased food intake and body weight. These effects of BDNF on food intake and body weight were counteracted by the co-administration of ,-helical-CRH, an antagonist for the CRH and urocortin receptors CRH-R1/R2, and partly attenuated by a selective antagonist for CRH-R2 but not CRH-R1. Intracerebroventricular BDNF also decreased the subcutaneous and visceral fat mass, adipocyte size and serum triglyceride levels, which were all attenuated by ,-helical-CRH. Furthermore, BDNF decreased the respiratory quotient and raised rectal temperature, which were counteracted by ,-helical-CRH. These results indicate that the CRH-urocortin-CRH-R2 pathway in the PVN and connected areas mediates the long-term effects of BDNF to depress feeding and promote lipolysis. [source] Pinealectomy reduces hepatic and muscular glycogen content and attenuates aerobic power adaptability in trained ratsJOURNAL OF PINEAL RESEARCH, Issue 1 2007Cristina das Neves Borges-Silva Abstract:, The current study emphasizes the crucial role of the pineal gland on the effects of chronic training in different tissues focusing on carbohydrate metabolism. We investigated the maximal oxygen uptake (aerobic power), muscle and liver glycogen content, and also the enzymes involved in the carbohydrate metabolism of rat adipose tissue. Pinealectomized and sham-operated adult male Wistar rats were distributed into four groups: pinealectomized (PINX) untrained, pinealectomized trained, control untrained and control trained. The maximal oxygen uptake capability was assayed before and after the training protocol by indirect open circuit calorimetry. The rats were killed after 8 wk of training. Blood samples were collected for glucose and insulin determinations. The glycogen content was assayed in the liver and muscle. Maximal activities of epididymal adipose tissue enzymes (hexokinase, pyruvate kinase, lactate dehydrogenase, citrate synthase and malic enzyme) as well as adipocyte size were determined. The exercise training in control animals promoted an increase in the aerobic power and in liver glycogen content but caused a reduction in the malic enzyme activity in adipose tissue. However, PINX trained animals, in contrast to trained controls, showed a decrease in the aerobic power and in liver and muscle glycogen content, as well as an increase in the activity of the adipocyte enzymes involved in carbohydrate metabolism. In conclusion, these data show that the pineal gland integrity is necessary for the homeostatic control of energy metabolism among adipose, muscle and hepatic tissues. The pinealectomized animals showed alterations in adaptive responses of the maximal oxygen uptake to training. Therefore, the pineal gland must be considered an influential participant in the complex adaptation to exercise and is involved in the improvement of endurance capacity. [source] Myostatin null mice respond differently to dietary-induced and genetic obesityANIMAL SCIENCE JOURNAL, Issue 5 2010Anna C. DILGER ABSTRACT Our objective was to determine sensitivity of myostatin null (MN) mice to obesity induction by dietary or genetic means. To induce dietary obesity, 3-week-old wild type (WT) and MN mice were fed diets with 60% calories (HF) or 10% calories from fat (LF) for 4 weeks. MN mice did gain body fat on the HF diet but to a lesser extent than WT mice. Body weight and fat content was similar in MN mice fed HF and LF diets. To induce genetic obesity, the MN mutation was incorporated into leptin db/db (DB) mice generating mice homozygous for each mutation (MNDB). Nine-week-old MNDB mice were obese, similar to DB mice. Body weight, body fat content, fat pad weight and adipocyte size were all increased in MNDB mice compared to MN and WT mice and were quite similar to DB mice. However, fasting blood glucose, an indicator of insulin resistance and diabetes, was reduced in MNDB mice compared to DB mice. These results indicate that MN mice gain less body fat than WT on a HF diet, but the MN mutation does not alter fat accumulation caused by DB mutation. Thus, MN mice are not always resistant to obesity development. [source] |