Count Analysis (count + analysis)

Distribution by Scientific Domains


Selected Abstracts


An update on cyathostomins: Anthelmintic resistance and worm control

EQUINE VETERINARY EDUCATION, Issue 10 2008
J. B. Matthews
Summary Intestinal nematodes are an important cause of equine disease. Of these parasites, the Cyathostominae are the most important group, both in terms of their prevalence and their pathogenicity. Cyathostomin infections are complex and control is further complicated by ever-increasing levels of resistance to some of the commonly used anthelmintics. There are no new equine anthelmintics under development, so it is imperative that the efficacy of any currently-effective drug classes be maintained for as long as possible. It is believed that the proportion of refugia (i.e. the percentage of parasites not exposed to a drug at each treatment) is one of the most crucial factors in determining the rate at which anthelmintic resistance develops. It is important, therefore, that levels of refugia be taken into account when designing nematode control programmes for horses. This can be assisted by knowledge of the local epidemiology of the infection, supplemented by faecal egg count analysis to identify those animals that are making the major contribution to pasture contamination. This type of rational nematode control requires equine veterinary surgeons to get involved in designing and implementing deworming programmes. The advice given must be based on a combination of knowledge of cyathostomin biology and epidemiology as well as an awareness of the parasite population's current drug sensitivity and a sound history of husbandry at the establishment. As anthelmintic resistance will be the major constraint on the future control of cyathostomins, researchers are now actively investigating this area. Studies are underway to develop tests that will enable earlier detection of anthelmintic resistance and an assay that will help identify those horses that require anthelmintic treatments targeted at intestinal wall larvae. [source]


Citation count analysis in addiction (2001)

ADDICTION, Issue 3 2004
J. C. VALDERRAMA ZURIÁN
No abstract is available for this article. [source]


Automated detection of malaria-associated intraleucocytic haemozoin by Cell-Dyn CD4000 depolarization analysis

INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, Issue 2 2003
C.S. Scott
Summary Laboratory tests for malaria are only performed if there is clinical suspicion of the disease, and a missed diagnosis contributes substantially to morbidity and mortality. Malaria parasites produce haemozoin, which is able to depolarize light and this allows the automated detection of malaria during routine complete blood count analysis (CBC) with some Abbott Cell-Dyn instruments. In this study, we evaluated the Cell-Dyn CD4000 with 831 blood samples submitted for malaria investigations. Samples were categorized as malaria negative (n = 417), convalescent malaria (n = 64) or malaria positive (n = 350) by reference to thin/thick film microscopy, ,rapid test' procedures, polymerase chain reaction analysis and clinical history. With regard to CD4000 depolarization analysis, a malaria positive CD4000 pattern was ascribed to samples that showed one or more abnormal depolarizing purple events, which corresponded to monocytes containing ingested malaria pigment (haemozoin). Positive CD4000 patterns were observed in 11 of 417, 50 of 64 and 281 of 350 of malaria negative, convalescent malaria and malaria positive samples respectively. The specificity and positive predictive values for malaria (active and convalescent) were very high (97.4 and 96.8%, respectively), while sensitivity and negative predictive values were 80.0 and 83.0% respectively. Depolarization analysis was particularly effective for Plasmodium falciparum malaria but there was lower detection sensitivity for White compared with Black African patients. CD4000 90° depolarization vs 0° analysis revealed a proportion of samples with small nonleucocyte-associated depolarizing particles. Appearance of such events in the form of a discrete cluster was associated with P. vivax rather than P. falciparum infection. [source]


Comparison of Three Pebble Count Protocols (EMAP, PIBO, and SFT) in Two Mountain Gravel-Bed Streams,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2009
Kristin Bunte
Abstract:, Although the term "pebble count" is in widespread use, there is no standardized methodology used for the field application of this procedure. Each pebble count analysis is the product of several methodological choices, any of which are capable of influencing the final result. Because there are virtually countless variations on pebble count protocols, the question of how their results differ when applied to the same study reach is becoming increasingly important. This study compared three pebble count protocols: the reach-averaged Environmental Monitoring and Assessment Program (EMAP) protocol named after the EMAP developed by the Environmental Protection Agency, the habitat-unit specific U.S. Forest Service's PACFISH/INFISH Biological Opinion (PIBO) Effectiveness Monitoring Program protocol, and a data-intensive method developed by the authors named Sampling Frame and Template (SFT). When applied to the same study reaches, particle-size distributions varied among the three pebble count protocols because of differences in sample locations within a stream reach and along a transect, in particle selection, and particle-size determination. The EMAP protocol yielded considerably finer, and the PIBO protocol considerably coarser distributions than the SFT protocol in the pool-riffle study streams, suggesting that the data cannot be used interchangeably. Approximately half of the difference was due to sampling at different areas within the study reach (i.e., wetted width, riffles, and bankfull width) and at different locations within a transect. The other half was attributed to using different methods for particle selection from the bed, particle-size determination, and the use of wide, nonstandard size classes. Most of the differences in sampling outcomes could be eliminated by using simple field tools, by collecting a larger sample size, and by systematically sampling the entire bankfull channel and all geomorphic units within the reach. [source]


Role of STAT6 and SMAD2 in a model of chronic allergen exposure: a mouse strain comparison study

CLINICAL & EXPERIMENTAL ALLERGY, Issue 1 2009
J. A. Hirota
Summary Background Asthma is a disease characterized by variable and reversible airway obstruction and is associated with airway inflammation, airway remodelling (including goblet cell hyperplasia, increased collagen deposition and increased smooth muscle mass) and increased airway responsiveness. It is believed that airway inflammation plays a critical role in the development of airway remodelling, with IL-13 and TGF-,1 pathways being strongly associated with the disease progression. Mouse models of asthma are capable of recapitulating some components of asthma and have been used to look at both IL-13 and TGF-,1 pathways, which use STAT6 and SMAD2 signalling molecules, respectively. Objectives Using brief and chronic models of allergen exposure, we utilized BALB/c and C57Bl/6 to explore the hypothesis that observed differences in responses to allergen between these mouse strains will involve fundamental differences in IL-13 and TGF-,1 responses. Methods The following outcome measurements were performed: airway physiology, bronchoalveolar lavage cell counts/cytokine analysis, histology, immunoblots and gene expression assays. Results We demonstrate in BALB/c mice an IL-13-dependent phosphorylation of STAT6, nuclear localized in inflammatory cells, which is associated with indices of airway remodelling and development of airway dysfunction. In BALB/c mice, phosphorylation of SMAD2 is delayed relative to STAT6 activation and also involves an IL-13-dependent mechanism. In contrast, despite an allergen-induced increase in IL-4, IL-13 and eosinophils, C57Bl/6 demonstrates a reduced and distinct pattern of phosphorylated STAT6, no SMAD2 phosphorylation changes and fail to develop indices of remodelling or changes in airway function. Conclusion The activation of signalling pathways and nuclear translocation of signalling molecules downstream of IL-13 and TGF-,1 further support the central role of these molecules in the pathology and dysfunction in animal models of asthma. Activation of signalling pathways downstream from IL-13 and TGF-,1 may be more relevant in disease progression than elevations in airway inflammation alone. [source]