Costimulatory Molecule Expression (costimulatory + molecule_expression)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


Enhanced B7 Costimulatory Molecule Expression In Inflammatory Human Sural Nerve Biopsies

JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 1 2001
R Kiefer
Objectives-To define the role of the costimulatory molecules B7-1 and B7-2 in inflammatory disorders of the peripheral nervous system. B7 molecules are essential for effective antigen presentation and may determine the differentiation of T cells into a Th-1 or Th-2 phenotype, thus modulating immune response and disease course. Methods-Forty nine sural nerve biopsies from patients with neuroborreliosis, Guillain-Barre syndrome (GBS), chronic inflammatory demyelinating polyneuropathy (CIDP), CIDP variants and hereditary neuropathies, and those with no detectable abnormality were investigated. The expression of B7-1 and B7-2 mRNA and protein was investigated by polymerase chain reaction (PCR) and immunocytochemistry. Results-B7-1 mRNA was strongly upregulated in both cases of neuroborreliosis, in two cases of GBS and one case of variant CIDP. Moderate to low levels were detected in the remaining GBS and CIDP biopsies and were rarely found in a noninflammatory control group consisting of hereditary neuropathy and normal nerves. At the immunocytochemical level, strong expression of B7-1 protein was found in both neuroborreliosis cases, and moderate or low expression in six of eight GBS cases and seven of 17 CIDP cases investigated, whereas only one of five non-inflammatory control nerves showed staining, which was very weak. In neuroborreliosis, B7-1 protein was found very pronounced in epineurial infiltrates, whereas in CBS and CIDP, labelling was predominantly endoneurial and localised to putative macrophages. B7-2 mRNA and protein were expressed only at low levels in neuroborreliosis and selected autoimmune neuropathy cases, and were essentially absent from noninflammatory controls. Conclusions-B7 molecules are expressed in the peripheral nervous system and regulated during disease, and their presence in macrophages underlines the putative function of endoneurial macrophages as local antigen presenting cells in the immunopathology of peripheral nerve. B7-1 rather than B7-2 is preferentially upregulated, possibly promoting the induction of a Th-1-type T cell response within the nerve. [source]


Comparative Evaluation of Cytokines, T-Cell Apoptosis, and Costimulatory Molecule Expression in Tuberculous and Nontuberculous Pleurisy

CLINICAL AND TRANSLATIONAL SCIENCE, Issue 3 2008
Priya Rajavelu M.Sc.
Abstract In this study, we compared several immune parameters in tuberculosis (TB) and nontuberculosis (NTB) pleurisy to gain an understanding of the mechanism behind enhanced Th1 apoptosis that occurs at sites of active Myobacterium tuberculosis (M. tuberculosis) infection. An initial evaluation of the accumulated cytokines in pleural fluid (PF) demonstrated that both TB and NTB pleurisy were associated with prointflammatory cytokines, while only TB pleurisy had augmented expression of interferon (IFN)-, and soluble Fas ligand (sFASL). Despite enhanced expression of the apoptosis-inducing molecule in TB pleurisy, T cells derived from both types of pleurisy exhibited significant apoptosis. In both groups, T-cell apoptosis correlated with low expression of CD80 on PF-derived macrophages and elevated accumulation of TGF-, in the PF. A causative correlation between TGF-, and low CD80 expression in the two groups was established by in vitro studies demonstrating TGF-, inhibition of CD80 upregulation in a macrophage cell line. Together, the findings allude to the possibility that activation in the absence of appropriate CD80 costimulation is the mechanism that leads to T-cell apoptosis at sites of active M. tuberculosis infection. Furthermore, the findings also indicate that T-cell apoptosis is perhaps a host regulatory mechanism to limit inflammation, rather than a pathogen-induced immune deviation. [source]


Kinetics of costimulatory molecule expression by T cells and dendritic cells during the induction of tolerance versus immunity in vivo

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 4 2005
Kristin Hochweller
Abstract Steady-state dendritic cells (DC) present peptide-MHC complexes to T cells in a tolerogenic manner, presumably because of deficient costimulation. However, it is clear that the path to tolerance involves initial T cell activation, suggesting that the deficit may lie in late-acting costimulatory molecules. With this in mind we have investigated the kinetics of expression of several costimulatory pairs on DC and OVA-reactive T cells after i.v. injection of mice with peptide and LPS (immunity), or peptide alone (tolerance). We find that T cells up-regulate CD154, OX40, RANKL and PD-1 whether they are destined for tolerance or immunity, although there are some differences in the levels and length of expression. In contrast, when analyzing DC, we found that up-regulation of CD80, CD86, CD40, RANK and PDL-1 occurred only when peptide was co-administered with LPS. These data give a picture of the T cell looking for costimulatory cues that are not forthcoming when pMHC is presented by steady-state DC, leading to tolerance. However, we did see a strong and rapid up-regulation of RANKL on T cells that occurred specifically when peptide was given in the absence of LPS, suggesting a possible positive signal influencing the decision between tolerance and immunity. [source]


Alcohol Exposure Impairs Myeloid Dendritic Cell Function in Rhesus Macaques

ALCOHOLISM, Issue 9 2009
Robert W. Siggins
Background:, Alcohol intoxication suppresses both the innate and adaptive immunities. Dendritic cells (DCs) are the major cell type bridging the innate and acquired immune responses. At the present time, the effects of alcohol on DC development in hematopoietic tissues and the functional activities of DCs are incompletely elucidated. This study investigated the impact of chronic alcohol exposure on the alteration of hematopoietic precursor cell and DC populations in the bone marrow and peripheral blood of rhesus macaques. Methods:, Rhesus macaques were administered alcohol or isocaloric sucrose daily for a period of 3 months through surgically implanted gastric catheters. Peripheral blood mononuclear cells (PBMCs) and bone marrow cells (BMCs) were isolated for flow cytometric analysis after 3 months. Monocytes were cultured with human IL-4 (10 ng/ml) and GM-CSF (50 ng/ml) in the absence and presence of alcohol (50 mM). On day 6 of the culture, a cocktail of stimulants including IL-1, (18 ng), IL-6 (1800 U), TNF-, (18 ng), and PGE2 (1.8 ,g) were added to the designated wells for transformation of immature dendritic cells (iDCs) to mature myeloid DCs. The cells were analyzed on day 8 by flow cytometry for expression of DC costimulatory molecule expression. Results:, EtOH-treated animals had significantly lower numbers of myeloid DCs (lineage-HLA-DR+CD11c+CD123,) in both the PBMCs and BMCs compared to controls (5,654 ± 1,273/106 vs. 2,353 ± 660/106 PBMCs and 503 ± 34 vs. 195 ± 44/106 BMCs). Under culture conditions, the number of lineage-HLA-DR+CD83+ cells was low in control wells (0.38 ± 0.08%). Alcohol inhibited the increase in the number of lineage-HLA-DR+CD83+ cells in iDC wells (2.30 ± 0.79% vs. 5.73 ± 1.40%). Alcohol also inhibited the increase in the number of lineage-HLA-DR+CD83+ cells in mature DC wells (1.23 ± 0.15% vs. 4.13 ± 0.62%). Conclusions:, Chronic EtOH decreases the bone marrow and circulating pools of myeloid DCs. Additionally, EtOH suppresses costimulatory molecule CD83 expression during DC transformation, which may attenuate the ability of DCs to initiate T-cell expansion. [source]


Monocyte cytokine and costimulatory molecule expression in patients infected with Leishmania mexicana

PARASITE IMMUNOLOGY, Issue 3 2007
G. CARRADA
SUMMARY Leishmania mexicana causes localized and diffuse cutaneous leishmaniasis. Patients with localized cutaneous leishmaniasis (LCL) develop a benign disease, whereas patients with diffuse cutaneous leishmaniasis (DCL) suffer from a progressive disease associated with anergy of the cellular response towards Leishmania antigens. We evaluated the production of the interleukins (IL) IL-12, IL-15, IL-18 and tumour necrosis factor-, (TNF-,) and the expression of the costimulatory molecules CD40, B7-1 and B7-2 in monocytes from LCL and DCL patients, stimulated in vitro with Leishmania mexicana lipophosphoglycan (LPG) for 18 h. LCL monocytes significantly increased TNF-,, IL-15 and IL-18 production, and this increase was associated with reduced amounts of IL-12. DCL monocytes produced no IL-15 or IL-18 and showed a decreasing tendency of TNF-, and IL-12 production as the severity of the disease increased. No difference was observed in the expression of CD40 and B7-1 between both groups of patients, yet B7-2 expression was significantly augmented in DCL patients. It remains to be established if this elevated B7-2 expression in DCL patients is cause or consequence of the Th2-type immune response that characterizes these patients. These data suggest that the diminished ability of the monocytes from DCL patients to produce cell-activating innate proinflammatory cytokines when stimulated with LPG is a possible cause for disease progression. [source]


Role of CD8+ CD25+ Foxp3+ regulatory T cells in multiple sclerosis

ANNALS OF NEUROLOGY, Issue 5 2010
Jorge Correale MD
Objective The objective of this study was to investigate the role of CD8+ CD25+ FoxP3+ cells during the course of multiple sclerosis (MS). Methods Peripheral blood and cerebrospinal fluid (CSF) CD8+ T-cell clones (TCCs) recognizing autoreactive CD4+ T cells were isolated from 20 MS patients during exacerbations, 15 patients in remission, 15 healthy subjects, and 10 patients with other inflammatory neurological diseases. Characteristics of noncytotoxic CD8+ CD25+ regulatory T cells were studied. Cell phenotype was evaluated using flow cytometry. Cytokine production and phospho-signal transducer and activator of transcription 3 (STAT3) concentration were determined using enzyme-linked immunosorbent assay. To assess 2,3-dioxygenase (IDO) activity on dendritic cells (DCs), kynurenine concentration was measured by high-performance liquid chromatography. Results Inhibition of CD4+ self-reactive T-cell proliferation, and of interferon-, and interleukin (IL)-17 secretion, was observed after adding CD8+ CD25+ FoxP3+ cells to cultures. Suppression was abrogated by silencing FoxP3 using small interfering RNA. Cells were CD122+, CTLA-4+, GITR+, CCR7+, and CD62L+, producing IL-10 and transforming growth factor-,. CD8+ CD25+ FoxP3+ cells downregulated costimulatory molecule expression on dendritic cells through a STAT3-mediated pathway, resulting in less efficient antigen presentation, and induced IDO expression on DCs through STAT3 and cytotoxic T-lymphocyte antigen 4-dependent mechanisms. CD8+ regulatory TCC cloning frequency studied in blood and CSF was suppressed to a greater degree during exacerbations than during remission or in controls. Likewise, in CSF of MS patients during acute exacerbations, lower levels of CD8+ CD25+ FoxP3+ T cells were detected using flow cytometry. Interpretation CD8+ CD25+ FoxP3+ cells are novel regulatory cells exerting significant influence over self-reactive CD4+ T-cell regulation during the course of MS. Induction of these cells may provide new therapeutic alternatives for MS by eliminating or inhibiting self-reactive T cells. ANN NEUROL 2010;67:625,638 [source]


IL-10 down-regulates costimulatory molecules on Mycobacterium tuberculosis -pulsed macrophages and impairs the lytic activity of CD4 and CD8 CTL in tuberculosis patients

CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 1 2004
S. DE LA BARRERA
SUMMARY Activation of T cells requires both TCR-specific ligation and costimulation through accessory molecules during T cell priming. IFN, is a key cytokine responsible for macrophage activation during Mycobacterium tuberculosis (Mtb) infection while IL-10 is associated with suppression of cell mediated immunity in intracellular infection. In this paper we evaluated the role of IFN, and IL-10 on the function of cytotoxic T cells (CTL) and on the modulation of costimulatory molecules in healthy controls and patients with active tuberculosis (TB). , -irradiated- Mtb (i- Mtb) induced IL-10 production from CD14+ cells from TB patients. Moreover, CD3+ T cells of patients with advanced disease also produced IL-10 after i- Mtb stimulation. In healthy donors, IL-10 decreased the lytic activity of CD4+ and CD8+ T cells whereas it increased ,, -mediated cytotoxicity. Furthermore, we found that the presence of IL-10 induced a loss of the alternative processing pathways of antigen presentation along with a down-regulation of the expression of costimulatory molecule expression on monocytes and macrophages from healthy individuals. Conversely, neutralization of endogenous IL-10 or addition of IFN, to either effector or target cells from TB patients induced a strong lytic activity mediated by CD8+ CTL together with an up-regulation of CD54 and CD86 expression on target cells. Moreover, we observed that macrophages from TB patients could use alternative pathways for i- Mtb presentation. Taken together, our results demonstrate that the presence of IL-10 during Mtb infection might contribute to mycobacteria persistence inside host macrophages through a mechanism that involved inhibition of MHC-restricted cytotoxicity against infected macrophages. [source]