Corresponding Sulfoxides (corresponding + sulfoxide)

Distribution by Scientific Domains


Selected Abstracts


Electrochemical, Chemical and Enzymatic Oxidations of Phenothiazines

ELECTROANALYSIS, Issue 17 2005
B. Blankert
Abstract The oxidation of several phenothiazine drugs (phenothiazine, promethazine hydrochloride, promazine hydrochloride, trimeprazine hydrochloride and ethopropazine hydrochloride) has been carried out in aqueous acidic media by electrochemical, chemical and enzymatic methods. The chemical oxidation was performed in acetic acid with hydrogen peroxide or in formate buffers using persulfate. The enzymatic oxidation was performed in acetate or ammonium formate buffer by the enzyme horseradish peroxidase in the presence of H2O2. Molecules with, in the lateral chain, two carbon atoms (2C) separating the ring nitrogen and the terminal nitrogen, showed two parallel oxidation pathways, that is (i) formation of the corresponding sulfoxide and (ii) cleavage of the lateral chain with liberation of phenothiazine (PHZ) oxidized products (PHZ sulfoxide and PHZ quinone imine). Molecules with three carbon atoms (3C) separating the two nitrogens were oxidized to the corresponding sulfoxide. The chemical oxidation of all the studied molecules by hydrogen peroxide resulted in the corresponding sulfoxide with no break of the lateral chain. Oxidation by persulfate yielded, for the 3C derivatives, only the corresponding sulfoxide, but it produced cleavage of the lateral chain for the 2C derivatives. The origin of the distinct oxidation pattern between 2C and 3C molecules might be related to steric effects due to the lateral chain. The data are of interest in drug metabolism studies, especially for the early search. In the case of 2C phenothiazines, the results predict the possibility of an in vivo cleavage of the lateral chain with liberation of phenothiazine oxidized products which are known to produce several adverse side effects. [source]


Novel Model Sulfur Compounds as Mechanistic Probes for Enzymatic and Biomimetic Oxidations

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 1 2005
Alicia B. Peñéñory
Abstract To test for the intermediacy of sulfide radical cations in biomimetic and enzymatic oxidations, the sulfides PhSCH3 (1a), PhSCH2Ph (1b), PhSCHPh2 (1c), PhSCPh3 (1d), CH3SCHPh2 (2), PhSCH2CH=CH2 (3), PhSCH2CH=CHPh (4) and CH3SCH2CH=CHPh (5) were studied, and their results were compared to those obtained for the corresponding chemical electron transfer (CET) and photoinduced electron transfer (PET) oxidations. The radical cations generated from 3,5 by CET in the presence of cerium(IV) ammonium nitrate (CAN) yielded only fragmentation products from the alkyl cations and the thiyl radicals (RS·), whereas 2·+ afforded both fragmentation and mainly ,-deprotonation products. Photochemical treatment of the sulfides 1a and 1b with C(NO2)4 gave only the corresponding sulfoxides, while fragmentation was the main pathway for the photoreactions of 1c, 2 and 5, and for 1d only this latter process was observed. These results support our selection of the sulfides RSCHPh2, RSCH2CH=CHPh (R = Me, Ph) and PhSCPh3 as models for the biomimetic and enzymatic studies. As evidenced by the sulfoxides and sulfones detected as unique products both in protic and in aprotic solvents, it is proposed that the mechanism of the biomimetic sulfoxidations of sulfides 1c and 2,5 by TPPFeIIICl is direct oxygen transfer. Three enzymes , Coprinus cinereus peroxidase (CiP), horseradish peroxidase (HRP) and chloroperoxidase (CPO) , were studied in the oxidation of sulfides 1a, 2, 4 and 5. The use of a racemic alkyl hydroperoxide in the CiP enzymatic oxidation of sulfides 5 and 2 yielded the corresponding sulfoxides (23 and 29%) and the aldehyde or benzophenone (5%), respectively. These results suggest the involvement of an ET process for the CiP-catalysed oxidation. Fragmentation products were observed in the enzymatic oxidation of sulfide 4 with HRP, which confirms the previously proposed ET mechanism. On the other hand, the CPO-enzymatic oxidation of sulfide 5 yielded only the corresponding sulfoxide, as would be expected for a direct oxygen-transfer or oxene mechanism. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


The Interplay of Inverted Redox Potentials and Aromaticity in the Oxidized States of New ,-Electron Donors: 9-(1,3-Dithiol-2-ylidene)fluorene and 9-(1,3-Dithiol-2-ylidene)thioxanthene Derivatives

CHEMISTRY - A EUROPEAN JOURNAL, Issue 12 2006
Samia Amriou Dr.
Abstract Derivatives of 9-(1,3-dithiol-2-ylidene)fluorene (9) and 9-(1,3-dithiol-2-ylidene)thioxanthene (10) have been synthesised using Horner,Wadsworth,Emmons reactions of (1,3-dithiol-2-yl)phosphonate reagents with fluorenone and thioxanthen-9-one. X-ray crystallography, solution electrochemistry, optical spectroscopy, spectroelectrochemistry and simultaneous electrochemistry and electron paramagnetic resonance (SEEPR), combined with theoretical calculations performed at the B3P86/6-31G** level, elucidate the interplay of the electronic and structural properties in these molecules. These compounds are strong two-electron donors, and the oxidation potentials depend on the electronic structure of the oxidised state. Two, single-electron oxidations (<) were observed for 9-(1,3-dithiol-2-ylidene)fluorene systems (9). In contrast, derivatives of 9-(1,3-dithiol-2-ylidene)thioxanthene (10) display the unusual phenomenon of inverted potentials (>) resulting in a single, two-electron oxidation process. The latter is due to the aromatic structure of the thioxanthenium cation (formed on the loss of a second electron), which stabilises the dication state (102+) compared with the radical cation. This contrasts with the nonaromatic structure of the fluorenium cation of system 9. The two-electron oxidation wave in the thioxanthene derivatives is split into two separate one-electron waves in the corresponding sulfoxide and sulfone derivatives 27,29 owing to destabilisation of the dication state. [source]


First Propargyl Azides Bearing Strong Acceptor Substituents and Their Effective Conversion into Allenyl Azides: Influence of the Electronic Effects of Substituents on the Reactivity of Propargyl Azides,,

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 17 2005
Joseph Rodolph Fotsing
Abstract We have succeeded in the synthesis of propargyl azides containing 1- or 3-phenylthio functionalities. The selective oxidation of their sulfur atoms to sulfoxides and sulfones allows access to the first propargyl azides bearing acceptor substituents. Interestingly, the prototropic rearrangement of the latter propargyl azides leads to the formation of allenyl azides with relatively high stabilities and with moderate to good yields. Propargyl azides containing phenylthio functionalities react in the presence of nucleophiles to afford the expected N -unsubstituted 1,2,3-triazoles via short-lived allenyl azides. These results are entirely different from those of the corresponding sulfoxides and sulfones, which react under the analogous conditions either to produce the corresponding bis(triazolo)pyrazine derivatives or to yield newly substituted vinyl azides. The latter compounds can successfully be used as starting material providing access to azirines. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


Novel Model Sulfur Compounds as Mechanistic Probes for Enzymatic and Biomimetic Oxidations

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 1 2005
Alicia B. Peñéñory
Abstract To test for the intermediacy of sulfide radical cations in biomimetic and enzymatic oxidations, the sulfides PhSCH3 (1a), PhSCH2Ph (1b), PhSCHPh2 (1c), PhSCPh3 (1d), CH3SCHPh2 (2), PhSCH2CH=CH2 (3), PhSCH2CH=CHPh (4) and CH3SCH2CH=CHPh (5) were studied, and their results were compared to those obtained for the corresponding chemical electron transfer (CET) and photoinduced electron transfer (PET) oxidations. The radical cations generated from 3,5 by CET in the presence of cerium(IV) ammonium nitrate (CAN) yielded only fragmentation products from the alkyl cations and the thiyl radicals (RS·), whereas 2·+ afforded both fragmentation and mainly ,-deprotonation products. Photochemical treatment of the sulfides 1a and 1b with C(NO2)4 gave only the corresponding sulfoxides, while fragmentation was the main pathway for the photoreactions of 1c, 2 and 5, and for 1d only this latter process was observed. These results support our selection of the sulfides RSCHPh2, RSCH2CH=CHPh (R = Me, Ph) and PhSCPh3 as models for the biomimetic and enzymatic studies. As evidenced by the sulfoxides and sulfones detected as unique products both in protic and in aprotic solvents, it is proposed that the mechanism of the biomimetic sulfoxidations of sulfides 1c and 2,5 by TPPFeIIICl is direct oxygen transfer. Three enzymes , Coprinus cinereus peroxidase (CiP), horseradish peroxidase (HRP) and chloroperoxidase (CPO) , were studied in the oxidation of sulfides 1a, 2, 4 and 5. The use of a racemic alkyl hydroperoxide in the CiP enzymatic oxidation of sulfides 5 and 2 yielded the corresponding sulfoxides (23 and 29%) and the aldehyde or benzophenone (5%), respectively. These results suggest the involvement of an ET process for the CiP-catalysed oxidation. Fragmentation products were observed in the enzymatic oxidation of sulfide 4 with HRP, which confirms the previously proposed ET mechanism. On the other hand, the CPO-enzymatic oxidation of sulfide 5 yielded only the corresponding sulfoxide, as would be expected for a direct oxygen-transfer or oxene mechanism. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


Fullerene-Promoted Singlet-Oxygen Photochemical Oxygenations in Glass-Polymer Microstructured Reactors

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 17 2008
Tommaso Carofiglio
Abstract In this paper we report the fabrication of thiolene-based microstructured reactors (MRs) that have been specifically designed to include solid-supported reagents within the microchannels network. We propose a convenient solution to realize reversible press-fit, leak-proof interconnects that greatly simplify the MR coupling to the external environment such as capillary tubing, sample reservoirs and pumps. The MRs have been used to carry out the oxidation of ,-terpinene and methionine using [60]fullerene, covalently linked to Tentagel® and silica gel matrices, as a singlet oxygen sensitizer. High conversions have been observed for both substrates although, in the case of ,-terpinene, a partial photodegradation of the endo -peroxide product was detected. Interestingly, in the case of methionine, a quantitative conversion to the corresponding sulfoxides was achieved in about 40 seconds, using low-power, white LED illumination. The reaction time is considerably shorter when compared to the batch procedure that requires, for the same process, about one hour illumination and the use of a 300-W tungsten halogen lamp. [source]


Asymmetric Sulfoxidation of Thioethers with Hydrogen Peroxide in Water Mediated by Platinum Chiral Catalyst

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 9 2005
Alessandro Scarso
Abstract Easy stereoselective oxidation of prochiral aryl alkyl sulfides 2 to the corresponding sulfoxides can be achieved in water-surfactant medium with inexpensive hydrogen peroxide mediated by the chiral platinum diphosphine complex {[(R)-BINAP]Pt(, - OH)}2(BF4)2 (1). Remarkable key features of general interest are (i) easy isolation of the products from catalyst by simple diethyl ether/water-surfactant two phase separation, (ii) catalyst loading as low as 1% mol, (iii) good yields, sulfoxide 3 to sulfone 4 ratio up to 200,:,1 and enantioselectivities up to 88%, (iv) mild experimental conditions. [source]