Corresponding Residue (corresponding + residue)

Distribution by Scientific Domains


Selected Abstracts


Homologous expression of a bacterial phytochrome

FEBS JOURNAL, Issue 8 2007
The cyanobacterium Fremyella diplosiphon incorporates biliverdin as a genuine, functional chromophore
Bacteriophytochromes constitute a light-sensing subgroup of sensory kinases with a chromophore-binding motif in the N-terminal half and a C-terminally located histidine kinase activity. The cyanobacterium Fremyella diplosiphon (also designated Calothrix sp.) expresses two sequentially very similar bacteriophytochromes, cyanobacterial phytochrome A (CphA) and cyanobacterial phytochrome B (CphB). Cyanobacterial phytochrome A has the canonical cysteine residue, by which covalent chromophore attachment is accomplished in the same manner as in plant phytochromes; however, its paralog cyanobacterial phytochrome B carries a leucine residue at that position. On the basis of in vitro experiments that showed, for both cyanobacterial phytochrome A and cyanobacterial phytochrome B, light-induced autophosphorylation and phosphate transfer to their cognate response regulator proteins RcpA and RcpB [Hübschmann T, Jorissen HJMM, Börner T, Gärtner W & deMarsac NT (2001) Eur J Biochem268, 3383,3389], we aimed at the identification of a chromophore that is incorporated in vivo into cyanobacterial phytochrome B within the cyanobacterial cell. The approach was based on the introduction of a copy of cphB into the cyanobacterium via triparental conjugation. The His-tagged purified, recombinant protein (CphBcy) showed photoreversible absorption bands similar to those of plant and bacterial phytochromes, but with remarkably red-shifted maxima [,max 700 and 748 nm, red-absorbing (Pr) and far red-absorbing (Pfr) forms of phytochrome, respectively]. A comparison of the absorption maxima with those of the heterologously generated apoprotein, assembled with phycocyanobilin (,max 686 and 734 nm) or with biliverdin IX, (,max 700 and 750 ± 2 nm), shows biliverdin IX, to be a genuine chromophore. The kinase activity of CphBcy and phosphotransfer to its cognate response regulator was found to be strictly Pr -dependent. As an N-terminally located cysteine was found as an alternative covalent binding site for several bacteriophytochrome photoreceptors that bind biliverdin and lack the canonical cysteine residue (e.g. Agrobacterium tumefaciens and Deinococcus radiodurans), this corresponding residue in heterologously expressed cyanobacterial phytochrome B was mutated into a serine (C24S); however, there was no change in its spectral properties. On the other hand, the mutation of His267, which is located directly after the canonical cysteine, into alanine (H267A), caused complete loss of the capability of cyanobacterial phytochrome B to form a chromoprotein. [source]


The exceptionally tight affinity of DnaA for ATP/ADP requires a unique aspartic acid residue in the AAA+ sensor 1 motif

MOLECULAR MICROBIOLOGY, Issue 5 2006
Hironori Kawakami
Summary Escherichia coli DnaA, an AAA+ superfamily protein, initiates chromosomal replication in an ATP-binding-dependent manner. Although DnaA has conserved Walker A/B motifs, it binds adenine nucleotides 10- to 100-fold more tightly than do many other AAA+ proteins. This study shows that the DnaA Asp-269 residue, located in the sensor 1 motif, plays a specific role in supporting high-affinity ATP/ADP binding. The affinity of the DnaA D269A mutant for ATP/ADP is at least 10- to 100-fold reduced compared with that of the wild-type and DnaA R270A proteins. In contrast, the abilities of DnaA D269A to bind a typical DnaA box, unwind oriC duplex in the presence of elevated concentrations of ATP, load DnaB onto DNA and support minichromosomal replication in a reconstituted system are retained. Whereas the acidic Asp residue is highly conserved among eubacterial DnaA homologues, the corresponding residue in many other AAA+ proteins is Asn/Thr and in some AAA+ proteins these neutral residues are essential for ATP hydrolysis but not ATP binding. As the intrinsic ATPase activity of DnaA is extremely weak, this study reveals a novel and specific function for the sensor 1 motif in tight ATP/ADP binding, one that depends on the alternate key residue Asp. [source]


Structure of the C-terminally truncated human ProMMP9, a gelatin-binding matrix metalloproteinase

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 7 2002
Patricia A. Elkins
The X-ray crystal structure of the proform of human matrix metalloproteinase MMP9 has been solved to 2.5,Å resolution. The construct includes the prodomain, the catalytic domain and three FnII (fibronectin type II) domains. The prodomain is inserted into the active-site cleft, blocking access to the catalytic zinc. Comparison with the crystal structure of the most closely related MMP, MMP2, indicates that the conformations of residues in the active-site cleft and in the cysteine-switch peptide of the prodomain are highly conserved and that design of MMP9-specific inhibitors will be challenging. In common with MMP2, the MMP9 S1, inhibitor-binding pocket is large compared with that of other MMPs. One small point of difference in the S1, binding pockets of MMP9 and MMP2 may provide an opportunity to explore the design of specific inhibitors. The side chain of Arg424 in MMP9 is angled slightly away from the S1, pocket when compared with the corresponding residue in MMP2, Thr424. The secondary structure of the FnII domains is conserved between the two closely related MMPs, although the second FnII domain makes no contact with the catalytic domain in MMP9, while the same domain in MMP2 has a substantial area of interaction with the catalytic domain. [source]


Exchanging the active site between phytases for altering the functional properties of the enzyme

PROTEIN SCIENCE, Issue 10 2000
Martin Lehmann
Abstract By using a novel consensus approach, we have previously managed to generate a fully synthetic phytase, consensus phytase-1, that was 15-26 °C more thermostable than the parent fungal phytases used in its design (Lehmann et al., 2000). We now sought to use the backbone of consensus phytase-1 and to modify its catalytic properties. This was done by replacing a considerable part of the active site (i.e., all the divergent residues) with the corresponding residues of Aspergillus niger NRRL 3135 phytase, which displays pronounced differences in specific activity, substrate specificity, and pH-activity profile. For the new protein termed consensus phytase-7, a major,although not complete,shift in catalytic properties was observed, demonstrating that rational transfer of favorable catalytic properties from one phytase to another is possible by using this approach. Although the exchange of the active site was associated with a 7.6 °C decrease in unfolding temperature (Tm) as measured by differential scanning calorimetry, consensus phytase-7 still was >7 °C more thermostable than all wild-type ascomycete phytases known to date. Thus, combination of the consensus approach with the selection of a "preferred" active site allows the design of a thermostabilized variant of an enzyme family of interest that (most closely) matches the most favorable catalytic properties found among its family members. [source]