Home About us Contact | |||
Corpus Striatum (corpus + striatum)
Selected AbstractsToward a better understanding of the pathophysiology of OCD SSRI responders: QEEG source localizationACTA PSYCHIATRICA SCANDINAVICA, Issue 3 2007T. G. Bolwig Objective:, To demonstrate the utility of three-dimensional source localization of the scalp-recorded electroencephalogram (EEG) for the identification of the most probable underlying brain dysfunction in patients with obsessive,compulsive disorder (OCD). Method:, Eyes-closed resting EEG data was recorded from the scalp locations of the International 10/20 System. Variable resolution electromagnetic tomography (VARETA) was applied to artifact-free EEG data. This mathematical algorithm estimates the source generators of EEG recorded from the scalp. Results:, An excess in the alpha range was found with sources in the corpus striatum, in the orbito-frontal and temporo-frontal regions in untreated OCD patients. This abnormality was seen to decrease following successful treatment with paroxetine. Conclusion:, The VARETA findings of an activation/deactivation pattern in cortical and subcortical structures in paroxetine-responsive patients are in good accordance with data obtained in previously published positron emission tomography studies related to current hypotheses of a thalamo-striatal-frontal feedback loop being relevant for understanding the pathophysiology of OCD. [source] N -methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine (MBDB): its properties and possible risksADDICTION BIOLOGY, Issue 3 2000L. A. G. J. M. Van Aerts MBDB (N -methyl-1-(1,3-benzodioxol-5-yl)-2-aminobutane) is the ,-ethyl homologue of MDMA (3,4-methylenedioxy-N-methylamphetamine). MBDB is metabolized and excreted similarly to MDMA: presumably, the majority of oral MBDB is excreted in urine unmetabolized. The main metabolic routes in man are thought to be O-dealkylation and subsequent methylation, sulphation and glucuronidation of the newly formed hydroxy groups. The major acute neuropharmacological effects of MBDB in the rat are an increase in serotonin release in the brain and an inhibition of serotonin and noradrenaline re-uptake. These effects compare well with those of MDMA, although the latter is more potent. MBDB may also slightly increase dopamine release and inhibit dopamine re-uptake, but to a lesser extent than MDMA. This is important, as dopamine release has been implicated in the reinforcing qualities of substances such as cocaine and amphetamine. The neuroendocrine effects of MBDB resemble those of MDMA. Both substances increase plasma ACTH, corticosterone, prolactin and renin. The neurophysiological effects of MBDB are characterized by a decrease in electrical activity throughout the brain, most notably in the alpha 2 and delta frequency bands. In contrast, hallucinogens increase the activity in the alpha 1 band, especially in the corpus striatum. In drug discrimination tests in the rat, MBDB, like MDMA, can be distinguished clearly from both stimulants and hallucinogens. The class of substances to which MBDB belongs may be named entactogens. MBDB dose-dependently increases locomotor activity and decreases exploratory behaviour in the rat and causes distress vocalization and wing extension in the newly hatched chicken. The rewarding properties of MBDB appear to be smaller than those of MDMA, as suggested by a 2.5 times weaker potency in the conditioned place preference test in rats. The main subjective effects of MBDB in man are a pleasant state of introspection, with greatly facilitated interpersonal communication and a pronounced sense of empathy and compassion between subjects. In this respect, MBDB again resembles MDMA. However, there are also differences. MBDB has a slower and more gentle onset of action than MDMA, produces less euphoria and has less stimulant properties. The few toxicological data available suggest that MBDB may cause serotonergic deficits in the brain, although the potency of MBDB to cause this neurotoxic effect is smaller than that of MDMA. Severe acute reactions in man as have been reported for MDMA have not been published for MBDB. The dependence potential of MBDB appears to be small, probably even smaller than that of MDMA. MBDB has been available at least since 1994 but its position on the synthetic drugs market is marginal. Subjective reports indicate that MBDB is less popular among users than MDMA. The reason may be that MBDB produces less euphoria than MDMA. Another possible explanation is that MBDB largely lacks the stimulant properties of MDMA. We calculated a margin of safety with a method similar to one used in the risk assessment of pharmaceuticals. The results suggest that MBDB is three times less likely to cause serotonergic brain deficits than MDMA. However, it should be noted that for both substances the margin of safety is less than one, indicating that the risk of neurotoxicity is not negligible. In animals, serotonergic brain deficits after exposure to MDMA have been linked to the degeneration of serotonergic nerve terminals. [source] Matrix metalloproteinases 2 and 9 in central nervous system and their modification after vanadium inhalationJOURNAL OF APPLIED TOXICOLOGY, Issue 6 2008L. Colín-Barenque Abstract Vanadium (V) derivatives are well-known environmental pollutants and its toxicity has been related with oxidative stress. Toxicity after vanadium inhalation on the substantia nigra, corpus striatum, hippocampus and ependymal epithelium was reported previously. The purpose of this study was to analyse the role of matrix metalloproteinases 2 (MMP-2) and 9 (MMP-9) in the changes observed in brain tissue after chronic V inhalation. Mice were exposed to vaporized, vanadium pentoxide 0.02 m in deionized water for 1 h twice a week, and killed at 1 h, 1, 2 and 4 weeks after exposure. The brain was removed and the olfactory bulb, prefrontal cortex, striatum and hippocampus were dissected and the MMP content was obtained by zymography. The results showed that MMP-9 increased in all the structures at the end of the exposure, although in the hippocampus this increment was evident after 1 week of exposure. When MMP-2 was analysed in the olfactory bulb and prefrontal cortex it remained unchanged throughout the whole exposure, while in the hippocampus it increased at week 4, while in the striatum MMP-2 increased from the second week only, through the whole experiment. These results demonstrate that V increased MMPs in different structures of the CNS and this change might be associated with the previously reported modifications, such as dendritic spine loss and neuronal cell death. The modifications in MMPs could be related with blood,brain barrier (BBB) disruption which was reported previously. Oxidative stress might also be involved in the activation of these gelatinases as part of the different mechanisms which take place in V toxicity in the CNS. Copyright © 2007 John Wiley & Sons, Ltd. [source] Identification of dopamine transporter in bovine pineal gland using [3H]GBR 12935JOURNAL OF PINEAL RESEARCH, Issue 1 2003P. Govitrapong Abstract: The mammalian pineal gland contains several neurotransmitters and receptors for amino acids, biogenic amines, and peptides. Some of these, such as D1 and D2 dopamine receptors, have been previously identified and characterized in the bovine pineal gland by our group. As a matter of fact, the density of D1 dopamine receptors in the pineal gland is higher than that of corpus striatum, suggesting that this organ must possess a high affinity dopamine transporter, which has been identified in this study by using [3H]GBR 12935 as a radiological ligand and nomifensine to determine non-specific binding. The association rate of [3H]GBR 12935 binding to the pineal membrane was examined as a function of time. The binding reached equilibrium within 45 min of incubation at 25°C. The specific binding was reversible and saturable. The dissociation time course of the specific [3H]GBR 12935 binding from the bovine pineal membrane was also studied. A half-life (t1/2) of 14-min was obtained. The saturation analysis of the [3H]GBR 12935 binding revealed a dissociation equilibrium constant (Kd) of 6.0 ± 0.9 nm and a receptor density (Bmax) of 6.9 ± 0.3 pmol/mg protein, which were comparable with those values obtained from bovine striatum and frontal cortex. In competitive experiments, the concentrations of drugs required to inhibit 50% of the binding (IC50) were in descending order GBR 12909 > GBR 12935 > trans -flupenthixol > nomifensine > cis -flupenthixol > amitriptyline > imipramine > desipramine > dopamine > fluoxetine > fuvoxamine > d -amphetamine. However, nisoxetine, SCH 23390, norepinephrine, and serotonin were unable to displace [3H]GBR binding. These results show that drugs capable of blocking dopamine transporters were effective in displacing [3H]GBR binding; whereas specific norepinephrine and serotonin transporter inhibitors were less effective or ineffective. In addition, the dopamine transporter is ion-dependent as sodium increased [3H]GBR binding in a concentration related manner. These results indicate that a high affinity dopamine transporter exists in the bovine pineal, which may exhibit circadian periodicity, and whose physiological functions need to be delineated and characterized in future investigations. [source] Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunologyNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 2 2008R. O. Carare Elimination of interstitial fluid and solutes plays a role in homeostasis in the brain, but the pathways are unclear. Previous work suggests that interstitial fluid drains along the walls of arteries. Aims: to define the pathways within the walls of capillaries and arteries for drainage of fluid and solutes out of the brain. Methods: Fluorescent soluble tracers, dextran (3 kDa) and ovalbumin (40 kDa), and particulate fluospheres (0.02 ,m and 1.0 ,m in diameter) were injected into the corpus striatum of mice. Brains were examined from 5 min to 7 days by immunocytochemistry and confocal microscopy. Results: soluble tracers initially spread diffusely through brain parenchyma and then drain out of the brain along basement membranes of capillaries and arteries. Some tracer is taken up by vascular smooth muscle cells and by perivascular macrophages. No perivascular drainage was observed when dextran was injected into mouse brains following cardiac arrest. Fluospheres expand perivascular spaces between vessel walls and surrounding brain, are ingested by perivascular macrophages but do not appear to leave the brain even following an inflammatory challenge with lipopolysaccharide or kainate. Conclusions: capillary and artery basement membranes act as ,lymphatics of the brain' for drainage of fluid and solutes; such drainage appears to require continued cardiac output as it ceases following cardiac arrest. This drainage pathway does not permit migration of cells from brain parenchyma to the periphery. Amyloid-, is deposited in basement membrane drainage pathways in cerebral amyloid angiopathy, and may impede elimination of amyloid-, and interstitial fluid from the brain in Alzheimer's disease. Soluble antigens, but not cells, drain from the brain by perivascular pathways. This atypical pattern of drainage may contribute to partial immune privilege of the brain and play a role in neuroimmunological diseases such as multiple sclerosis. [source] |