Home About us Contact | |||
Cortical Tumors (cortical + tumor)
Kinds of Cortical Tumors Selected AbstractsProliferative activity and genetic changes in adrenal cortical tumors examined by flow cytometry, fluorescence in situ hybridization and immunohistochemistryINTERNATIONAL JOURNAL OF UROLOGY, Issue 2 2005KOUSUKE TAKEHARA Abstract Background: To determine differences in biological features among different adrenal tumors, we investigated the DNA ploidy, numerical chromosomal aberration and proliferative activity in human adrenal cortical neoplasms. Methods: Our study included six adrenal cortical adenomas with Cushing syndrome, 12 adenomas with hyperaldosteronism, three non-functioning adenomas and three adrenal cortical carcinomas. Isolated nuclei from frozen samples were used for fluorescence in situ hybridization (FISH) analysis, and formalin-fixed, paraffin-embedded tissues from the same materials were analyzed using flow cytometry (FCM) for DNA ploidy. Sections from paraffin blocks were stained immunohistochemically with antibodies against Ki-67 and p53. For FISH analysis, we used an ,-centromeric enumeration probe for chromosome 17. Results: The mean Ki-67 labeling index (LI) of adrenal cortical carcinomas was markedly higher than that of adrenal cortical adenomas (209.4 vs 8.7). In functional adrenal cortical adenomas, the LI was significantly lower in adenomas with hyperaldosteronism than in those with Cushing syndrome (P = 0.004), although FCM results indicated that tetraploid patterns were more frequently observed in the former type. Tumor size was significantly smaller in adenomas with hyperaldosteronism than in those with Cushing syndrome (P = 0.004). Chromosome 17 showed disomy in all adrenal cortical adenomas, whereas chromosome 17 abnormalities were found in two of three adrenal cortical carcinomas. Only the latter two cases strongly expressed p53 protein. Conclusions: Our study characterized various biological features of benign and malignant adrenal cortical tumors. The use of a combination of markers might provide additional information to assist our understanding of the clinical behavior of an individual adrenal cortical tumor. [source] Genetic engineering to study testicular tumorigenesisAPMIS, Issue 1 2003WEI YAN In humans, Sertoli cell tumors account for approximately 4% of all testicular tumors, and 20% of these are malignant. The mechanisms underlying Sertoli cell tumorigenesis remain largely unknown. Using gene knockout technology, we previously generated mutant mice lacking the , subunit of inhibin dimers. The inhibin ,-null male mice develop testicular Sertoli cell tumors with 100% penetrance. These tumors develop as early as 4 weeks of age and cause a cachexia-like wasting syndrome. Castrated inhibin , knockout mice develop sex steroidogenic adrenal cortical tumors. These studies have identified inhibins as secreted tumor suppressors with specificity for the gonads and adrenal glands. It had been suggested that endocrine factors play roles in Sertoli cell tumorigenesis by altering cell cycle machinery of the Sertoli cells. To test the potential of these factors to function as modifiers of Sertoli cell tumorigenesis, we have employed a genetic intercross strategy, breeding inhibin , mutant mice with mutant mice deficient in endocrine signaling factors including gonadotropin releasing hormone (hypogonadal, hpg mice), follicle stimulating hormone, anti-Müllerian hormone (MH), activin receptor type II, or androgen receptor (testicular feminization, tfm mice), or mice overexpressing follistatin. We are also investigating the effects of loss of critical cell cycle regulators, such as cyclin dependent kinase inhibitor p27, on Sertoli cell tumorigenesis in inhibin , knockout males. These studies clearly demonstrate the roles of these factors as modifiers of the Sertoli cell tumorigenesis. Activin signaling through activin receptor type II is responsible for the cachexia-like syndrome observed in the inhibin , knockout mice with tumors. The gonadotropin hormones are essential for testicular tumor development, but elevated FSH levels are not sufficient to cause Sertoli cell tumors. Absence of FSH, lack of androgen receptor, or overexpression of follistatin slows the tumor growth and minimizes the cachexia symptoms, thus prolonging the life span of these double mutant mice. In contrast, absence of AMH or p27 causes earlier onset and more aggressive development of testicular tumor, with an earlier death of double mutant mice. We are currently investigating roles of estrogen signaling pathways, and other cell cycle regulators, in tumor development in the inhibin , knockout mice by generating mice with double or triple mutations. Genetic engineering in mouse models provides a powerful tool to study the mechanisms of testicular tumorigenesis and define the important genetic modifiers in vivo. [source] |