Home About us Contact | |||
Cortical Thickness (cortical + thickness)
Selected AbstractsThe Skeletal Structure of Insulin-Like Growth Factor I-Deficient MiceJOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2001Daniel Bikle Abstract The importance of insulin-like growth factor I (IGF-I) for growth is well established. However, the lack of IGF-I on the skeleton has not been examined thoroughly. Therefore, we analyzed the structural properties of bone from mice rendered IGF-I deficient by homologous recombination (knockout [k/o]) using histomorphometry, peripheral quantitative computerized tomography (pQCT), and microcomputerized tomography (,CT). The k/o mice were 24% the size of their wild-type littermates at the time of study (4 months). The k/o tibias were 28% and L1 vertebrae were 26% the size of wild-type bones. Bone formation rates (BFR) of k/o tibias were 27% that of the wild-type littermates. The k/o bones responded normally to growth hormone (GH; 1.7-fold increase) and supranormally to IGF-I (5.2-fold increase) with respect to BFR. Cortical thickness of the proximal tibia was reduced 17% in the k/o mouse. However, trabecular bone volume (bone volume/total volume [BV/TV]) was increased 23% (male mice) and 88% (female mice) in the k/o mice compared with wild-type controls as a result of increased connectivity, increased number, and decreased spacing of the trabeculae. These changes were either less or not found in L1. Thus, lack of IGF-I leads to the development of a bone structure, which, although smaller, appears more compact. [source] Effect of cortical thickness and cancellous bone density on the holding strength of internal fixator screwsJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2004J. Seebeck Abstract Internal fixators are a new class of implants designed to preserve the periosteal blood supply of the bone. In contrast to conventional plate fixation in which the screws have spherical heads and are loaded mainly by axial pullout forces, screws in internal fixators are "locked" within the plate and therefore subjected to axial as well as bending loads. In this study the ultimate loads of screws of a commercially available internal fixator system were tested in a pullout (n = 72) and cantilever bending mode (n = 72) in metaphyseal and diaphyseal regions of four pairs of human tibiae with different bone qualities. Cortical thickness and cancellous bone density were determined at the screw insertion sites. Stepwise multiple linear regression revealed that cortical thickness and cancellous density can explain 93% and 98% of the variance of the ultimate load of the screws in an axial pullout and cantilever bending mode. Screws in internal fixators are better suited to transmit shear forces and thereby make better use of the strength potential of bone than screws used in conventional plate fixation: this is especially advantageous when bone strength is reduced, e.g. due to osteoporosis. © 2004 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved. [source] The neuroanatomy of grapheme,color synesthesiaEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2009Lutz Jäncke Abstract Grapheme,color synesthetes perceive particular colors when seeing a letter, word or number (grapheme). Functional neuroimaging studies have provided some evidence in favor of a neural basis for this type of synesthesia. Most of these studies have reported extra activations in the fusiform gyrus, which is known to be involved in color, letter and word processing. The present study examined different neuroanatomical features (i.e. cortical thickness, cortical volume and cortical surface area) in a sample of 48 subjects (24 grapheme,color synesthetes and 24 control subjects), and revealed increased cortical thickness, volume and surface area in the right and left fusiform gyrus and in adjacent regions, such as the lingual gyrus and the calcarine cortex, in grapheme,color synesthetes. In addition, we set out to analyze structural connectivity based on fractional anisotropy (FA) measurements in a subsample of 28 subjects (14 synesthetes and 14 control subjects). In contrast to the findings of a recent neuroanatomical study using modern diffusion tensor imaging measurement techniques, we did not detect any statistically significant difference in FA between synesthetes and non-synesthetes in the fusiform gyri. Our study thus supports the hypothesis of local anatomical differences in cortical characteristics in the vicinity of the V4 complex. The observed altered brain anatomy in grapheme,color synesthetes might be the anatomical basis for this particular form of synesthesia but it is also possible that the detected effects are a consequence (rather than the primary cause) of the life-long experience of grapheme,color synesthesia. [source] Cognitive function, P3a/P3b brain potentials, and cortical thickness in agingHUMAN BRAIN MAPPING, Issue 11 2007Anders M. Fjell Abstract The purpose of the study was to assess the relationship between the P3a/P3b brain potentials, cortical thickness, and cognitive function in aging. Thirty-five younger and 37 older healthy participants completed a visual three-stimuli oddball ERP (event-related potential)-paradigm, a battery of neuropsychological tests, and MRI scans. Groups with short vs. long latency, and low vs. high amplitude, were compared on a point by point basis across the entire cortical mantle. In the young, thickness was only weakly related to P3. In the elderly, P3a amplitude effects were found in parietal areas, the temporoparietal junction, and parts of the posterior cingulate cortex. P3b latency was especially related to cortical thickness in large frontal regions. Path models with the whole sample pooled together were constructed, demonstrating that cortical thickness in the temporoparietal cortex predicted P3a amplitude, which in turn predicted executive function, and that thickness in orbitofrontal cortex predicted P3b latency, which in turn predicted fluid function. When age was included in the model, the relationship between P3 and cognitive function vanished, while the relationship between regional cortical thickness and P3 remained. It is concluded that thickness in specific cortical areas correlates with scalp recorded P3a/P3b in elderly, and that these relationships differentially mediate higher cognitive function. Hum Brain Mapp 2007. © 2007 Wiley-Liss, Inc. [source] Morphologic changes associated with functional adaptation of the navicular bone of horsesJOURNAL OF ANATOMY, Issue 5 2007V. A. Bentley Abstract Failure of functional adaptation to protect the skeleton from damage is common and is often associated with targeted remodeling of bone microdamage. Horses provide a suitable model for studying loading-related skeletal disease because horses are physically active, their exercise is usually regulated, and adaptive failure of various skeletal sites is common. We performed a histologic study of the navicular bone of three groups of horses: (1) young racing Thoroughbreds (n = 10); (2) young unshod ponies (n = 10); and (3) older horses with navicular syndrome (n = 6). Navicular syndrome is a painful condition that is a common cause of lameness and is associated with extensive remodeling of the navicular bone; a sesamoid bone located within the hoof which articulates with the second and third phalanges dorsally. The following variables were quantified: volumetric bone mineral density; cortical thickness (Ct.Th); bone volume fraction, microcrack surface density; density of osteocytes and empty lacunae; and resorption space density. Birefringence of bone collagen was also determined using circularly polarized light microscopy and disruption of the lacunocanalicular network was examined using confocal microscopy. Remodeling of the navicular bone resulted in formation of transverse secondary osteons orientated in a lateral to medial direction; bone collagen was similarly orientated. In horses with navicular syndrome, remodeling often led to the formation of intracortical cysts and development of multiple tidemarks at the articular surface. These changes were associated with high microcrack surface density, low bone volume fraction, low density of osteocytes, and poor osteocyte connectivity. Empty lacunae were increased in Thoroughbreds. Resorption space density was not increased in horses with navicular syndrome. Taken together, these data suggest that the navicular bone may experience habitual bending across the sagittal plane. Consequences of cumulative cyclic loading in horses with navicular syndrome include arthritic degeneration of adjacent joints and adaptive failure of the navicular bone, with accumulation of microdamage and associated low bone mass, poor osteocyte connectivity, and low osteocyte density, but not formation of greater numbers of resorption spaces. [source] Guidelines for assessment of bone microstructure in rodents using micro,computed tomographyJOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2010Mary L Bouxsein Abstract Use of high-resolution micro,computed tomography (µCT) imaging to assess trabecular and cortical bone morphology has grown immensely. There are several commercially available µCT systems, each with different approaches to image acquisition, evaluation, and reporting of outcomes. This lack of consistency makes it difficult to interpret reported results and to compare findings across different studies. This article addresses this critical need for standardized terminology and consistent reporting of parameters related to image acquisition and analysis, and key outcome assessments, particularly with respect to ex vivo analysis of rodent specimens. Thus the guidelines herein provide recommendations regarding (1) standardized terminology and units, (2) information to be included in describing the methods for a given experiment, and (3) a minimal set of outcome variables that should be reported. Whereas the specific research objective will determine the experimental design, these guidelines are intended to ensure accurate and consistent reporting of µCT-derived bone morphometry and density measurements. In particular, the methods section for papers that present µCT-based outcomes must include details of the following scan aspects: (1) image acquisition, including the scanning medium, X-ray tube potential, and voxel size, as well as clear descriptions of the size and location of the volume of interest and the method used to delineate trabecular and cortical bone regions, and (2) image processing, including the algorithms used for image filtration and the approach used for image segmentation. Morphometric analyses should be based on 3D algorithms that do not rely on assumptions about the underlying structure whenever possible. When reporting µCT results, the minimal set of variables that should be used to describe trabecular bone morphometry includes bone volume fraction and trabecular number, thickness, and separation. The minimal set of variables that should be used to describe cortical bone morphometry includes total cross-sectional area, cortical bone area, cortical bone area fraction, and cortical thickness. Other variables also may be appropriate depending on the research question and technical quality of the scan. Standard nomenclature, outlined in this article, should be followed for reporting of results. © 2010 American Society for Bone and Mineral Research [source] Bone microstructure at the distal tibia provides a strength advantage to males in late puberty: An HR-pQCT studyJOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2010Melonie Burrows Abstract Bone is a complex structure with many levels of organization. Advanced imaging tools such as high-resolution (HR) peripheral quantitative computed tomography (pQCT) provide the opportunity to investigate how components of bone microstructure differ between the sexes and across developmental periods. The aim of this study was to quantify the age- and sex-related differences in bone microstructure and bone strength in adolescent males and females. We used HR-pQCT (XtremeCT, Scanco Medical, Geneva, Switzerland) to assess total bone area (ToA), total bone density (ToD), trabecular bone density (TrD), cortical bone density (CoD), cortical thickness (Cort.Th), trabecular bone volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), trabecular spacing standard deviation (Tb.Sp SD), and bone strength index (BSI, mg2/mm4) at the distal tibia in 133 females and 146 males (15 to 20 years of age). We used a general linear model to determine differences by age- and sex-group and age,×,sex interactions (p,<,0.05). Across age categories, ToD, CoD, Cort.Th, and BSI were significantly lower at 15 and 16 years compared with 17 to 18 and 19 to 20 years in males and females. There were no differences in ToA, TrD, and BV/TV across age for either sex. Between sexes, males had significantly greater ToA, TrD, Cort.Th, BV/TV, Tb.N, and BSI compared with females; CoD and Tb.Sp SD were significantly greater for females in every age category. Males' larger and denser bones confer a bone-strength advantage from a young age compared with females. These structural differences could represent bones that are less able to withstand loads in compression in females. © 2010 American Society for Bone and Mineral Research [source] Parathyroid hormone (PTH),induced bone gain is blunted in SOST overexpressing and deficient miceJOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2010Ina Kramer Abstract Intermittent parathyroid hormone (PTH) treatment is a potent bone anabolic principle that suppresses expression of the bone formation inhibitor Sost. We addressed the relevance of Sost suppression for PTH-induced bone anabolism in vivo using mice with altered Sost gene dosage. Six-month-old Sost overexpressing and 2-month-old Sost deficient male mice and their wild-type littermates were subjected to daily injections of 100,µg/kg PTH(1,34) or vehicle for a 2-month period. A follow-up study was performed in Sost deficient mice using 40 and 80,µg/kg PTH(1,34). Animals were sacrificed 4 hours after the final PTH administration and Sost expression in long bone diaphyses was determined by qPCR. Bone changes were analyzed in vivo in the distal femur metaphysis by pQCT and ex vivo in the tibia and lumbar spine by DXA. Detailed ex vivo analyses of the femur were performed by pQCT, µCT, and histomorphometry. Overexpression of Sost resulted in osteopenia and Sost deletion in high bone mass. As shown before, PTH suppressed Sost in wild-type mice. PTH treatment induced substantial increases in bone mineral density, content, and cortical thickness and in aging wild-type mice also led to cancellous bone gain owing to amplified bone formation rates. PTH-induced bone gain was blunted at all doses and skeletal sites in Sost overexpressing and deficient mice owing to attenuated bone formation rates, whereas bone resorption was not different from that in PTH-treated wild-type controls. These data suggest that suppression of the bone formation inhibitor Sost by intermittent PTH treatment contributes to PTH bone anabolism. © 2010 American Society for Bone and Mineral Research [source] Severity of Vertebral Fractures Is Associated With Alterations of Cortical Architecture in Postmenopausal Women,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2009Elisabeth Sornay-Rendu Abstract Patients with vertebral fractures (VFx) have trabecular architectural disruption on iliac biopsies. Because cortical bone is an important determinant of bone strength, we assessed cortical and trabecular microarchitecture at peripheral sites in patients with VFx of varying number (N) and severity (S). Bone architecture and volumetric density (vBMD) were assessed at the distal radius and tibia with HR-pQCT (XTreme CT; Scanco Medical, Bassersdorf, Switzerland) in 100 women with VFx (age, 74 ± 9 yr) of different S (GI, n = 23; GII, n = 35; GIII, n = 42) and in 362 women (age, 69 ± 7 yr) without peripheral or VFx (G0) from the OFELY study. Spine areal BMD (aBMD) was assessed by DXA. Among all women, at the radius and after adjustment for age and aBMD, there were significant trends in lower vBMD, cortical thickness (Cort.Th), trabecular number (Tb.N) and thickness (Tb.Th), higher trabecular separation (Tb.Sp), and distribution of separation (Tb.Sp.SD) with greater VFx S and N. Among women with VFx, lower Cort.Th and cortical vBMD (D.Cort) were associated with severe (GIII) and multiple (n > 2) VFx (p < 0.05). The age-adjusted OR for each SD decrease of Cort.Th was 2.04 (95% CI, 1.02,4.00) after adjustment for aBMD. At the tibia, there were trends for lower vBMD, Tb.N, Tb.Th, and higher Tb.Sp and Tb.Sp.SD with greater VFx S and N (p < 0.001). Among women with VFx, lower Cort.Th and D.Cort were associated with severe and multiple (n > 3) VFx (p < 0.01). In postmenopausal women, VFx are associated with low vBMD and architectural decay of trabecular and cortical bone at the radius and tibia, independently of spine aBMD. Severe and multiple VFx are associated with even more alterations of cortical bone. [source] Femoral Neck BMD Is a Strong Predictor of Hip Fracture Susceptibility in Elderly Men and Women Because It Detects Cortical Bone Instability: The Rotterdam Study,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2007Fernando Rivadeneira Abstract We studied HSA measurements in relation to hip fracture risk in 4806 individuals (2740 women). Hip fractures (n = 147) occurred at the same absolute levels of bone instability in both sexes. Cortical instability (propensity of thinner cortices in wide diameters to buckle) explains why hip fracture risk at different BMD levels is the same across sexes. Introduction: Despite the sexual dimorphism of bone, hip fracture risk is very similar in men and women at the same absolute BMD. We aimed to elucidate the main structural properties of bone that underlie the measured BMD and that ultimately determines the risk of hip fracture in elderly men and women. Materials and Methods: This study is part of the Rotterdam Study (a large prospective population-based cohort) and included 147 incident hip fracture cases in 4806 participants with DXA-derived hip structural analysis (mean follow-up, 8.6 yr). Indices compared in relation to fracture included neck width, cortical thickness, section modulus (an index of bending strength), and buckling ratio (an index of cortical bone instability). We used a mathematical model to calculate the hip fracture distribution by femoral neck BMD, BMC, bone area, and hip structure analysis (HSA) parameters (cortical thickness, section modulus narrow neck width, and buckling ratio) and compared it with prospective data from the Rotterdam Study. Results: In the prospective data, hip fracture cases in both sexes had lower BMD, thinner cortices, greater bone width, lower strength, and higher instability at baseline. In fractured individuals, men had an average BMD that was 0.09 g/cm2 higher than women (p < 0.00001), whereas no significant difference in buckling ratios was seen. Modeled fracture distribution by BMD and buckling ratio levels were in concordance to the prospective data and showed that hip fractures seem to occur at the same absolute levels of bone instability (buckling ratio) in both men and women. No significant differences were observed between the areas under the ROC curves of BMD (0.8146 in women and 0.8048 in men) and the buckling ratio (0.8161 in women and 0.7759 in men). Conclusions: The buckling ratio (an index of bone instability) portrays in both sexes the critical balance between cortical thickness and bone width. Our findings suggest that extreme thinning of cortices in expanded bones plays a key role on local susceptibility to fracture. Even though the buckling ratio does not offer additional predictive value, these findings improve our understanding of why low BMD is a good predictor of fragility fractures. [source] IGF-I Receptor Is Required for the Anabolic Actions of Parathyroid Hormone on Bone,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2007Yongmei Wang Abstract We showed that the IGF-IR,null mutation in mature osteoblasts leads to less bone and decreased periosteal bone formation and impaired the stimulatory effects of PTH on osteoprogenitor cell proliferation and differentiation. Introduction: This study was carried out to examine the role of IGF-I signaling in mediating the actions of PTH on bone. Materials and Methods: Three-month-old mice with an osteoblast-specific IGF-I receptor null mutation (IGF-IR OBKO) and their normal littermates were treated with vehicle or PTH (80 ,g/kg body weight/d for 2 wk). Structural measurements of the proximal and midshaft of the tibia were made by ,CT. Trabecular and cortical bone formation was measured by bone histomorphometry. Bone marrow stromal cells (BMSCs) were obtained to assess the effects of PTH on osteoprogenitor number and differentiation. Results: The fat-free weight of bone normalized to body weight (FFW/BW), bone volume (BV/TV), and cortical thickness (C.Th) in both proximal tibia and shaft were all less in the IGF-IR OBKO mice compared with controls. PTH decreased FFW/BW of the proximal tibia more substantially in controls than in IGF-IR OBKO mice. The increase in C.Th after PTH in the proximal tibia was comparable in both control and IGF-IR OBKO mice. Although trabecular and periosteal bone formation was markedly lower in the IGF-IR OBKO mice than in the control mice, endosteal bone formation was comparable in control and IGF-IR OBKO mice. PTH stimulated endosteal bone formation only in the control animals. Compared with BMSCs from control mice, BMSCs from IGF-IR OBKO mice showed equal alkaline phosphatase (ALP)+ colonies on day 14, but fewer mineralized nodules on day 28. Administration of PTH increased the number of ALP+ colonies and mineralized nodules on days 14 and 28 in BMSCs from control mice, but not in BMSCs from IGF-IR OBKO mice. Conclusions: Our results indicate that the IGF-IR null mutation in mature osteoblasts leads to less bone and decreased bone formation, in part because of the requirement for the IGF-IR in mature osteoblasts to enable PTH to stimulate osteoprogenitor cell proliferation and differentiation. [source] Inactivation of Pten in Osteo-Chondroprogenitor Cells Leads to Epiphyseal Growth Plate Abnormalities and Skeletal Overgrowth,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2007Alice Fiona Ford-Hutchinson Abstract To study the role of the Pten tumor suppressor in skeletogenesis, we generated mice lacking this key phosphatidylinositol 3,-kinase pathway regulator in their osteo-chondroprogenitors. A phenotype of growth plate dysfunction and skeletal overgrowth was observed. Introduction: Skeletogenesis is a complex process relying on a variety of ligands that activate a range of intracellular signal transduction pathways. Although many of these stimuli are known to activate phosphatidylinositol 3,-kinase (PI3K), the function of this pathway during cartilage development remains nebulous. To study the role of PI3K during skeletogenesis, we used mice deficient in a negative regulator of PI3K signaling, the tumor suppressor, Pten. Materials and Methods:Pten gene deletion in osteo-chondrodroprogenitors was obtained by interbreeding mice with loxP-flanked Pten exons with mice expressing the Cre recombinase under the control of the type II collagen gene promoter (Ptenflox/flox:Col2a1Cre mice). Phenotypic analyses included microcomputed tomography and immunohistochemistry techniques. Results: ,CT revealed that Ptenflox/flox:Col2a1Cre mice exhibited both increased skeletal size, particularly of vertebrae, and massive trabeculation accompanied by increased cortical thickness. Primary spongiosa development and perichondrial bone collar formation were prominent in Ptenflox/flox:Col2a1Cre mice, and long bone growth plates were disorganized and showed both matrix overproduction and evidence of accelerated hypertrophic differentiation (indicated by an altered pattern of type X collagen and alkaline phosphatase expression). Consistent with increased PI3K signaling, Pten-deficient chondrocytes showed increased phospho-PKB/Akt and phospho-S6 immunostaining, reflective of increased mTOR and PDK1 activity. Interestingly, no significant change in growth plate proliferation was seen in Pten-deficient mice, and growth plate fusion was found at 6 months. Conclusions: By virtue of its ability to modulate a key signal transduction pathway responsible for integrating multiple stimuli, Pten represents an important regulator of both skeletal size and bone architecture. [source] Thyroid-Stimulating Hormone Restores Bone Volume, Microarchitecture, and Strength in Aged Ovariectomized Rats*,,§JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2007T Kuber Sampath PhD Abstract We show the systemic administration of low levels of TSH increases bone volume and improves bone microarchitecture and strength in aged OVX rats. TSH's actions are mediated by its inhibitory effects on RANKL-induced osteoclast formation and bone resorption coupled with stimulatory effects on osteoblast differentiation and bone formation, suggesting TSH directly affects bone remodeling in vivo. Introduction: Thyroid-stimulating hormone (TSH) receptor haploinsufficient mice with normal circulating thyroid hormone levels have reduced bone mass, suggesting that TSH directly affects bone remodeling. We examined whether systemic TSH administration restored bone volume in aged ovariectomized (OVX) rats and influenced osteoclast formation and osteoblast differentiation in vitro. Materials and Methods: Sprague-Dawley rats were OVX at 6 months, and TSH therapy was started immediately after surgery (prevention mode; n = 80) or 7 mo later (restoration mode; n = 152). Hind limbs and lumbar spine BMD was measured at 2- or 4-wk intervals in vivo and ex vivo on termination at 8,16 wk. Long bones were subjected to ,CT, histomorphometric, and biomechanical analyses. The direct effect of TSH was examined in osteoclast and osteoblast progenitor cultures and established rat osteosarcoma-derived osteoblastic cells. Data were analyzed by ANOVA Dunnett test. Results: In the prevention mode, low doses (0.1 and 0.3 ,g) of native rat TSH prevented the progressive bone loss, and importantly, did not increase serum triiodothyroxine (T3) and thyroxine (T4) levels in aged OVX rats. In restoration mode, animals receiving 0.1 and 0.3 ,g TSH had increased BMD (10,11%), trabecular bone volume (100,130%), trabecular number (25,40%), trabecular thickness (45,60%), cortical thickness (5,16%), mineral apposition and bone formation rate (200,300%), and enhanced mechanical strength of the femur (51,60%) compared with control OVX rats. In vitro studies suggest that TSH's action is mediated by its inhibitory effects on RANKL-induced osteoclast formation, as shown in hematopoietic stem cells cultivated from TSH-treated OVX rats. TSH also stimulates osteoblast differentiation, as shown by effects on alkaline phosphatase activity, osteocalcin expression, and mineralization rate. Conclusions: These results show for the first time that systemically administered TSH prevents bone loss and restores bone mass in aged OVX rats through both antiresorptive and anabolic effects on bone remodeling. [source] Multiple Genetic Loci From CAST/EiJ Chromosome 1 Affect vBMD Either Positively or Negatively in a C57BL/6J Background,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2006Bouchra Edderkaoui Abstract Skeletal phenotype analyses of 10 B6.CAST-1 congenic sublines of mice have revealed evidence for the presence of three closely linked QTLs in Chr 1 that influence femoral vBMD both positively and negatively. Introduction: BMD is an important component of bone strength and a recognized predictor of risk for osteoporotic fracture. Our goal in this study was to fine map the chromosomal location of volumetric BMD (vBMD) quantitative trait loci (QTLs) in mouse distal chromosome 1 (Chr 1). Materials and Methods: After several backcrosses of the B6.CAST-1T congenic strain, which carried the initial BMD QTL in Chr 1 with B6 mice, the N10F1 generation mice were intercrossed to obtain recombinations that yielded different regions of the QTL. Thirty-eight polymorphic markers were used to fine map the initial 1T QTL region (100-192 Mb). Different skeletal parameters were compared between the 10 sublines and B6 female mice at 16 weeks of age. A t -test was used to determine the significant difference between sublines and B6 control mice, whereas one-way ANOVA and posthoc (Newman-Keuls) tests were performed to compare the phenotype between the sublines. Results: Significantly higher femur vBMD was found in sublines that carried cast alleles from 100 to 169 and 172 to 185 Mb of the centromere compared with the B6 control mice (10-12%, p < 0.001). However, sublines that carried cast alleles from 185 to 192 Mb showed significantly lower femur vBMD compared with the control mice (,6%, p < 0.05). Furthermore, femur vBMD phenotype showed a negative correlation with endosteal circumference (r = ,0.8, p = 0.003), and a strong correlation with cortical thickness for combined data from the 10 sublines (r = 0.97, p < 0.001). Moreover, a high correlation was found between body weight and both periosteal and endosteal circumferences for sublines carrying cast alleles from 167 to 175, 168 to 185, and 169 to 185 Mb, whereas no significant correlation was found between these parameters for sublines carrying cast alleles from 172 to 185 Mb. Conclusions: Genetic analysis using congenic sublines revealed that the initial BMD QTL on Chr 1 is a complex site with multiple loci affecting bone phenotypes, showing the value of the congenic approach in clearly identifying loci that control specific traits. [source] Low Skeletal Muscle Mass Is Associated With Poor Structural Parameters of Bone and Impaired Balance in Elderly Men,The MINOS Study,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2005Pawel Szulc MD Abstract In 796 men, 50-85 years of age, decreased relative skeletal muscle mass index was associated with narrower bones, thinner cortices, and a consequent decreased bending strength (lower section modulus), as well as with impaired balance and an increased risk of falls. Introduction: In men, appendicular skeletal muscle mass (ASM) is correlated positively with BMC and areal BMD (aBMD). In elderly men, low muscle mass and strength (sarcopenia) is associated with difficulties in daily living activities. The aim of this study was to evaluate if ASM is correlated with bone size, mechanical properties of bones, balance, and risk of falls in elderly men. Materials and Methods: This study used 796 men, 50-85 years of age, belonging to the MINOS cohort. Lifestyle factors were evaluated by standardized questionnaires. Estimates of mechanical bone properties were derived from aBMD measured by DXA. ASM was estimated by DXA. The relative skeletal muscle mass index (RASM) was calculated as ASM/(body height)2.3. Results: After adjustment for age, body size, tobacco smoking, professional physical activity, and 17,-estradiol concentration, RASM was correlated positively with BMC, aBMD, external diameter, and cortical thickness (r = 0.17-0.34, p < 0.0001) but not with volumetric BMD. Consequently, RASM was correlated with section modulus (r = 0.29-0.39, p < 0.0001). Men in the lowest quartile of RASM had section modulus of femoral neck and distal radius lower by 12-18% in comparison with men in the highest quartile of RASM. In contrast, bone width was not correlated with fat mass, reflecting the load of body weight (except for L3), which suggests that the muscular strain may exert a direct stimulatory effect on periosteal apposition. After adjustment for confounding variables, a decrease in RASM was associated with increased risk of falls and of inability to accomplish clinical tests of muscle strength, static balance, and dynamic balance (odds ratio per 1 SD decrease in RASM, 1.31-2.23; p < 0.05-0.001). Conclusions: In elderly men, decreased RASM is associated with narrower bones and thinner cortices, which results in a lower bending strength. Low RASM is associated with impaired balance and with an increased risk of falls in elderly men. It remains to be studied whether low RASM is associated with decreased periosteal apposition and with increased fracture risk in elderly men, and whether the difference in skeletal muscle mass between men and women contributes to the between-sex difference in fracture incidence. [source] Inactivation of the Na-Cl Co-Transporter (NCC) Gene Is Associated With High BMD Through Both Renal and Bone Mechanisms: Analysis of Patients With Gitelman Syndrome and Ncc Null Mice,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2005Laurence Nicolet-Barousse Abstract Chronic thiazide treatment is associated with high BMD. We report that patients and mice with null mutations in the thiazide-sensitive NaCl cotransporter (NCC) have higher renal tubular Ca reabsorption, higher BMD, and lower bone remodeling than controls, as well as abnormalities in Ca metabolism, mainly caused by Mg depletion. Introduction: Chronic thiazide treatment decreases urinary Ca excretion (UVCa) and increases BMD. To understand the underlying mechanisms, Ca and bone metabolism were studied in two models of genetic inactivation of the thiazide-sensitive NaCl cotransporter (NCC): patients with Gitelman syndrome (GS) and Ncc knockout (Ncc,/,) mice. Materials and Methods: Ca metabolism was analyzed in GS patients and Ncc,/, mice under conditions of low dietary Ca. BMD was measured by DXA in patients and mice, and bone histomorphometry was analyzed in mice. Results: GS patients had low plasma Mg. They exhibited reduced UVCa, but similar serum Ca and GFR as control subjects, suggesting increased renal Ca reabsorption. Blood PTH was lower despite lower serum ionized Ca, and Mg repletion almost corrected both relative hypoparathyroidism and low UVCa. BMD was significantly increased in GS patients at both lumbar (+7%) and femoral (+16%) sites, and osteocalcin was reduced. In Ncc,/, mice, serum Ca and GFR were unchanged, but UVCa was reduced and PTH was elevated; Mg repletion largely corrected both abnormalities. Trabecular and cortical BMD were higher than in Ncc+/+ mice (+4% and +5%, respectively), and despite elevated PTH, were associated with higher cortical thickness and lower endosteal osteoclastic surface. Conclusions: Higher BMD is observed in GS patients and Ncc,/, mice. Relative hypoparathyroidism (human) and bone resistance to PTH (mice), mainly caused by Mg depletion, can explain the low bone remodeling and normal/low serum Ca despite increased renal Ca reabsorption. [source] ,-Arrestin2 Regulates the Differential Response of Cortical and Trabecular Bone to Intermittent PTH in Female Mice,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2005Mary L Bouxsein PhD Abstract Cytoplasmic arrestins regulate PTH signaling in vitro. We show that female ,-arrestin2,/, mice have decreased bone mass and altered bone architecture. The effects of intermittent PTH administration on bone microarchitecture differed in ,-arrestin2,/, and wildtype mice. These data indicate that arrestin-mediated regulation of intracellular signaling contributes to the differential effects of PTH at endosteal and periosteal bone surfaces. Introduction: The effects of PTH differ at endosteal and periosteal surfaces, suggesting that PTH activity in these compartments may depend on some yet unidentified mechanism(s) of regulation. The action of PTH in bone is mediated primarily by intracellular cAMP, and the cytoplasmic molecule ,-arrestin2 plays a central role in this signaling regulation. Thus, we hypothesized that arrestins would modulate the effects of PTH on bone in vivo. Materials and Methods: We used pDXA, ,CT, histomorphometry, and serum markers of bone turnover to assess the skeletal response to intermittent PTH (0, 20, 40, or 80 ,g/kg/day) in adult female mice null for ,-arrestin2 (,-arr2,/,) and wildtype (WT) littermates (7-11/group). Results and Conclusions: ,-arr2,/, mice had significantly lower total body BMD, trabecular bone volume fraction (BV/TV), and femoral cross-sectional area compared with WT. In WT females, PTH increased total body BMD, trabecular bone parameters, and cortical thickness, with a trend toward decreased midfemoral medullary area. In ,-arr2,/, mice, PTH not only improved total body BMD, trabecular bone architecture, and cortical thickness, but also dose-dependently increased femoral cross-sectional area and medullary area. Histomorphometry showed that PTH-stimulated periosteal bone formation was 2-fold higher in ,-arr2,/, compared with WT. Osteocalcin levels were significantly lower in ,-arr2,/, mice, but increased dose-dependently with PTH in both ,-arr2,/, and WT. In contrast, whereas the resorption marker TRACP5B increased dose-dependently in WT, 20-80 ,g/kg/day of PTH was equipotent with regard to stimulation of TRACP5B in ,-arr2,/,. In summary, ,-arrestin2 plays an important role in bone mass acquisition and remodeling. In estrogen-replete female mice, the ability of intermittent PTH to stimulate periosteal bone apposition and endosteal resorption is inhibited by arrestins. We therefore infer that arrestin-mediated regulation of intracellular signaling contributes to the differential effects of PTH on cancellous and cortical bone. [source] An In Vitro Study of the Ultrasonic Axial Transmission Technique at the Radius: 1-MHz Velocity Measurements Are Sensitive to Both Mineralization and Intracortical Porosity,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2004Emmanuel Bossy Abstract The ultrasonic axial transmission technique allows for investigating skeletal sites such as the cortical layer of long bones (radius, tibia, phalanges). Using synchrotron radiation ,CT, we investigated, in vitro, the relationships between 1-MHz axial transmission SOS measurements at the radius and site-matched measurements of C.Th, POR, MIN, and vBMD. Introduction: The ultrasonic axial transmission technique allows for investigating skeletal sites such as the cortical layer of long bones (radius, tibia, phalanges). Materials and Methods:Using synchrotron radiation ,CT, we investigated, in vitro, the relationships between 1-MHz axial transmission speed of sound (SOS) measurements at the radius and site-matched measurements of cortical thickness (C.Th), intracortical porosity (POR), tissue mineralization (MIN), and volumetric BMD (vBMD). SOS measurements were based on bidirectional axial transmission and were performed with a 1-MHz proprietary probe on 39 excised human radii. Results: The highest correlations between SOS values and bone parameters (R2SOS/POR = 0.28, p < 10,3; R2SOS/MIN = 0.38, p < 10,4; R2SOS/vBMD = 0.57, p < 10,3) were found for bone parameters assessed in a 1-mm-thick periosteal region of the cortex rather than throughout the whole cortex. The observed moderate correlation between SOS and C.Th values (R2SOS/C.Th = 0.20, p < 10,2) disappeared when controlled for other variables. The two best multilinear predictive models, including either BMD alone or the pair of dependent variables MIN and POR (all assessed in the periosteal cortex), were equally accurate in predicting SOS values (R2SOS/(POR,MIN) = 0.59, p < 10,5; R2SOS/vBMD = 0.57, p < 10,5). Conclusion: For the first time, the respective adjusted contributions of POR (,24 m/s%,1) and tissue mineralization (+3.5 m/s/mg/cm,3) to SOS values were assessed. These results suggest potential sensitivity of axial transmission SOS values to changes in cortical bone status under different pathological conditions or treatments affecting POR and/or tissue mineralization. [source] The Influence of an Insulin-Like Growth Factor I Gene Promoter Polymorphism on Hip Bone Geometry and the Risk of Nonvertebral Fracture in the Elderly: The Rotterdam Study,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2004Fernando Rivadeneira Abstract The absence of the wildtype allele of a promoter polymorphism of the IGF-I gene is associated with increased risk (1.5; 95% CI, 1.1-2.0) of fragility fracture in women (n = 4212) but not in men (n = 2799). An approximation of hip bone geometry (from DXA) suggested the polymorphism is associated with bone strength and stability in gender-specific ways. Introduction: Previously, we found a CA-repeat promoter polymorphism in the insulin-like growth factor I (IGF-I) gene associated with IGF-I levels and BMD in postmenopausal women, but the relationship with fractures is unclear. In this large population-based study of elderly men and women, we examined the association between this IGF-I promoter polymorphism with parameters of bone geometry and the occurrence of fractures. Material and Methods: Within the Rotterdam Study, a prospective population-based cohort, the IGF-I polymorphism was analyzed in relation to incident nonvertebral fractures in 2799 men and 4212 women followed on average for 8.6 years. Furthermore, we estimated structural parameters of hip bone geometry indirectly from DXA outputs of the femoral neck in 2372 men and 3114 women. We studied neck width, cortical thickness, and the cortical buckling ratio and the section modulus as indexes of bone stability and bending strength. Results: Women heterozygotes and noncarriers of the allele had, respectively, 1.2 (95% CI, 1.0-1.5) and 1.5 (95% CI, 1.1-2.0) increased risk of having a fragility fracture at older age compared with homozygotes for the 192-bp allele (p trend = 0.0007). In men, fracture risk was not influenced by the polymorphism. Compared with homozygotes for the 192-bp allele, noncarrier males had ,1% narrower femoral necks and 2.2% lower section moduli (p trend < 0.05). Noncarrier females had 1.7% thinner cortices and 1.6% higher buckling ratios (p trend < 0.05) but no significant differences in femoral neck widths and section moduli. In women with low body mass index, genotype differences in bone strength (section modulus) and fracture risk were accentuated (p interaction = 0.05). The genotype-dependent differences in hip bone geometry did not fully explain the genotype-dependent differences in fracture risk. Conclusions: The CA-repeat promoter polymorphism in the IGF-I gene is associated with the risk for fragility fracture at old age in women and with bone structure in both genders. [source] Recombinant Human Parathyroid Hormone (1,34) [Teriparatide] Improves Both Cortical and Cancellous Bone StructureJOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2003Yebin Jiang MD Abstract Histomorphometry and ,CT of 51 paired iliac crest biopsy specimens from women treated with teriparatide revealed significant increases in cancellous bone volume, cancellous bone connectivity density, cancellous bone plate-like structure, and cortical thickness, and a reduction in marrow star volume. Introduction: We studied the ability of teriparatide (rDNA origin) injection [rhPTH(1,34), TPTD] to improve both cancellous and cortical bone in a subset of women enrolled in the Fracture Prevention Trial of postmenopausal women with osteoporosis after a mean treatment time of 19 months. This is the first report of a biopsy study after treatment with teriparatide having a sufficient number of paired biopsy samples to provide quantitative structural data. Methods: Fifty-one paired iliac crest bone biopsy specimens (placebo [n = 19], 20 ,g teriparatide [n = 18], and 40 ,g teriparatide [n = 14]) were analyzed using both two-dimensional (2D) histomorphometry and three-dimensional (3D) microcomputed tomography (,CT). Data for both teriparatide treatment groups were pooled for analysis. Results and Conclusions: By 2D histomorphometric analyses, teriparatide significantly increased cancellous bone volume (median percent change: teriparatide, 14%; placebo, ,24%; p = 0.001) and reduced marrow star volume (teriparatide, ,16%; placebo, 112%; p = 0.004). Teriparatide administration was not associated with osteomalacia or woven bone, and there were no significant changes in mineral appositional rate or wall thickness. By 3D cancellous and cortical bone structural analyses, teriparatide significantly decreased the cancellous structure model index (teriparatide, ,12%; placebo, 7%; p = 0.025), increased cancellous connectivity density (teriparatide, 19%; placebo, ,14%; p = 0.034), and increased cortical thickness (teriparatide, 22%; placebo, 3%; p = 0.012). These data show that teriparatide treatment of postmenopausal women with osteoporosis significantly increased cancellous bone volume and connectivity, improved trabecular morphology with a shift toward a more plate-like structure, and increased cortical bone thickness. These changes in cancellous and cortical bone morphology should improve biomechanical competence and are consistent with the substantially reduced incidences of vertebral and nonvertebral fractures during administration of teriparatide. [source] Osteoblast-Specific Targeting of Soluble Colony-Stimulating Factor-1 Increases Cortical Bone Thickness in Mice,,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2003SL Abboud Abstract The soluble and membrane-bound forms of CSF-1 are synthesized by osteoblasts and stromal cells in the bone microenvironment. Transgenic mice, generated to selectively express sCSF-1 in bone, showed increased cortical thickness in the femoral diaphysis caused by new bone formation along the endosteal surface. The ability of sCSF-1 to enhance bone cell activity in vivo is potentially relevant for increasing cortical bone in a variety of disorders. Introduction: The soluble form of colony-stimulating factor-1 (sCSF-1) and the membrane-bound form of CSF-1 (mCSF-1) have been shown to support osteoclastogenesis in vitro; however, the effect of each peptide on bone remodeling in vivo is unclear. To determine the effect of sCSF-1, selectively expressed in bone, the skeletal phenotype of transgenic mice harboring the human sCSF-1 cDNA under the control of the osteocalcin promoter was assessed. Methods: At 5 and 14 weeks, mice were analyzed for CSF-1 protein levels, weighed, and X-rayed, and femurs were removed for peripheral quantitative computed tomography, histology, and histomorphometry. Results: High levels of human sCSF-1 were detected in bone extracts and, to a lesser extent, in plasma. Adult transgenic mice showed normal body weight and increased circulating monocytic cells. At 5 weeks, the femoral diaphysis was similar in CSF-1T and wt/wt littermates. However, by 14 weeks, the femoral diaphysis in CSF-1T mice showed increased cortical thickness and bone mineral density. In contrast to the diaphysis, the femoral metaphysis of CSF-1T mice showed normal cancellous bone comparable with wt/wt littermates at each time point. Histological sections demonstrated increased woven bone along the endosteal surface of the diaphysis and intracortical remodeling. Fluorochrome-labeling analysis confirmed endocortical bone formation in CSF-1T, with a 3.1-fold increase in the percentage of double-labeled surfaces and a 3.6-fold increase in the bone formation rate compared with wt/wt mice. Although remodeling resulted in a slightly porous cortex, sCSF-1 preferentially stimulated endocortical bone formation, leading to increased cortical thickness. Conclusions: These findings indicate that sCSF-1 is a key determinant of bone cell activity in the corticoendosteal envelope. [source] Insulin-Like Growth Factor I Is Required for the Anabolic Actions of Parathyroid Hormone on Mouse Bone,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2002Daniel D. Bikle M.D., Ph.D. Abstract Parathyroid hormone (PTH) is a potent anabolic agent for bone, but the mechanism(s) by which it works remains imperfectly understood. Previous studies have indicated that PTH stimulates insulin-like growth factor (IGF) I production, but it remains uncertain whether IGF-I mediates some or all of the skeletal actions of PTH. To address this question, we examined the skeletal response to PTH in IGF-I-deficient (knockout [k/o]) mice. These mice and their normal littermates (NLMs) were given daily injections of PTH (80 ,g/kg) or vehicle for 2 weeks after which their tibias were examined for fat-free weight (FFW), bone mineral content, bone structure, and bone formation rate (BFR), and their femurs were assessed for mRNA levels of osteoblast differentiation markers. In wild-type mice, PTH increased FFW, periosteal BFR, and cortical thickness (C.Th) of the proximal tibia while reducing trabecular bone volume (BV); these responses were not seen in the k/o mice. The k/o mice had normal mRNA levels of the PTH receptor and increased mRNA levels of the IGF-I receptor but markedly reduced basal mRNA levels of the osteoblast markers. Surprisingly, these mRNAs in the k/o bones increased several-fold more in response to PTH than the mRNAs in the bones from their wild-type littermates. These results indicate that IGF-I is required for the anabolic actions of PTH on bone formation, but the defect lies distal to the initial response of the osteoblast to PTH. [source] A Randomized School-Based Jumping Intervention Confers Site and Maturity-Specific Benefits on Bone Structural Properties in Girls: A Hip Structural Analysis Study,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 3 2002M. A. Petit Abstract We compared 7-month changes in bone structural properties in pre- and early-pubertal girls randomized to exercise intervention (10-minute, 3 times per week, jumping program) or control groups. Girls were classified as prepubertal (PRE; Tanner breast stage 1; n = 43 for intervention [I] and n = 25 for control [C]) or early-pubertal (EARLY; Tanner stages 2 and 3; n = 43 for I and n = 63 for C). Mean ± SD age was 10.0 ± 0.6 and 10.5 ± 0.6 for the PRE and EARLY groups, respectively. Proximal femur scans were analyzed using a hip structural analysis (HSA) program to assess bone mineral density (BMD), subperiosteal width, and cross-sectional area and to estimate cortical thickness, endosteal diameter, and section modulus at the femoral neck (FN), intertrochanter (IT), and femoral shaft (FS) regions. There were no differences between intervention and control groups for baseline height, weight, calcium intake, or physical activity or for change over 7 months (p > 0.05). We used analysis of covariance (ANCOVA) to examine group differences in changes of bone structure, adjusting for baseline weight, height change, Tanner breast stage, and physical activity. There were no differences in change for bone structure in the PRE girls. The more mature girls (EARLY) in the intervention group showed significantly greater gains in FN (+2.6%, p = 0.03) and IT (+1.7%, p = 0.02) BMD. Underpinning these changes were increased bone cross-sectional area and reduced endosteal expansion. Changes in subperiosteal dimensions did not differ. Structural changes improved section modulus (bending strength) at the FN (+4.0%, p = 0.04), but not at the IT region. There were no differences at the primarily cortical FS. These data provide insight into geometric changes that underpin exercise-associated gain in bone strength in early-pubertal girls. [source] Lasofoxifene (CP-336,156) Protects Against the Age-Related Changes in Bone Mass, Bone Strength, and Total Serum Cholesterol in Intact Aged Male RatsJOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2001Hua Zhu Ke Abstract The purpose of this study was to evaluate if long-term (6 months) treatment with lasofoxifene (LAS), a new selective estrogen receptor modulator (SERM), can protect against age-related changes in bone mass and bone strength in intact aged male rats. Sprague-Dawley male rats at 15 months of age were treated (daily oral gavage) with either vehicle (n = 12) or LAS at 0.01 mg/kg per day (n = 12) or 0.1 mg/kg per day (n = 11) for 6 months. A group of 15 rats was necropsied at 15 months of age and served as basal controls. No significant change was found in body weight between basal and vehicle controls. However, an age-related increase in fat body mass (+42%) and decrease in lean body mass (,8.5%) was observed in controls. Compared with vehicle controls, LAS at both doses significantly decreased body weight and fat body mass but did not affect lean body mass. No significant difference was found in prostate wet weight among all groups. Total serum cholesterol was significantly decreased in all LAS-treated rats compared with both the basal and the vehicle controls. Both doses of LAS treatment completely prevented the age-related increase in serum osteocalcin. Peripheral quantitative computerized tomography (pQCT) analysis at the distal femoral metaphysis indicated that the age-related decrease in total density, trabecular density, and cortical thickness was completely prevented by treatment with LAS at 0.01 mg/kg per day or 0.1 mg/kg per day. Histomorphometric analysis of proximal tibial cancellous bone showed an age-related decrease in trabecular bone volume (TBV; ,46%), trabecular number (Tb.N), wall thickness (W.Th), mineral apposition rate, and bone formation rate-tissue area referent. Moreover, an age-related increase in trabecular separation (Tb.Sp) and eroded surface was observed. LAS at 0.01 mg/kg per day or 0.1 mg/kg per day completely prevented these age-related changes in bone mass, bone structure, and bone turnover. Similarly, the age-related decrease in TBV and trabecular thickness (Tb.Th) and the age-related increase in osteoclast number (Oc.N) and osteoclast surface (Oc.S) in the third lumbar vertebral cancellous bone were completely prevented by treatment with LAS at both doses. Further, LAS at both doses completely prevented the age-related decrease in ultimate strength (,47%) and stiffness (,37%) of the fifth lumbar vertebral body. These results show that treatment with LAS for 6 months in male rats completely prevents the age-related decreases in bone mass and bone strength by inhibiting the increased bone resorption and bone turnover associated with aging. Further, LAS reduced total serum cholesterol and did not affect the prostate weight in these rats. Our data support the potential use of a SERM for protecting against the age-related changes in bone and serum cholesterol in elderly men. [source] Intermittently Administered Human Parathyroid Hormone(1,34) Treatment Increases Intracortical Bone Turnover and Porosity Without Reducing Bone Strength in the Humerus of Ovariectomized Cynomolgus MonkeysJOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2001David B. Burr Abstract Cortical porosity in patients with hyperparathyroidism has raised the concern that intermittent parathyroid hormone (PTH) given to treat osteoporotic patients may weaken cortical bone by increasing its porosity. We hypothesized that treatment of ovariectomized (OVX) cynomolgus monkeys for up to 18 months with recombinant human PTH(1,34) [hPTH(1,34)] LY333334 would significantly increase porosity in the midshaft of the humerus but would not have a significant effect on the strength or stiffness of the humerus. We also hypothesized that withdrawal of PTH for 6 months after a 12-month treatment period would return porosity to control OVX values. OVX female cynomolgus monkeys were given once daily subcutaneous (sc) injections of recombinant hPTH(1,34) LY333334 at 1.0 ,g/kg (PTH1), 5.0 ,g/kg (PTH5), or 0.1 ml/kg per day of phosphate-buffered saline (OVX). Sham OVX animals (sham) were also given vehicle. After 12 months, PTH treatment was withdrawn from half of the monkeys in each treatment group (PTH1-W and PTH5-W), and they were treated for the remaining 6 months with vehicle. Double calcein labels were given before death at 18 months. After death, static and dynamic histomorphometric measurements were made intracortically and on periosteal and endocortical surfaces of sections from the middiaphysis of the left humerus. Bone mechanical properties were measured in the right humeral middiaphysis. PTH dose dependently increased intracortical porosity. However, the increased porosity did not have a significant detrimental effect on the mechanical properties of the bone. Most porosity was concentrated near the endocortical surface where its mechanical effect is small. In PTH5 monkeys, cortical area (Ct.Ar) and cortical thickness (Ct.Th) increased because of a significantly increased endocortical mineralizing surface. After withdrawal of treatment, porosity in PTH1-W animals declined to sham values, but porosity in PTH5-W animals remained significantly elevated compared with OVX and sham. We conclude that intermittently administered PTH(1,34) increases intracortical porosity in a dose-dependent manner but does not reduce the strength or stiffness of cortical bone. [source] Structural Trends in the Aging Femoral Neck and Proximal Shaft: Analysis of the Third National Health and Nutrition Examination Survey Dual-Energy X-Ray Absorptiometry Data,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2000Thomas J. Beck Abstract Hip scans of U.S. adults aged 20,99 years acquired in the Third National Health and Nutrition Examination Survey (NHANES III) using dual-energy X-ray absorptiometry (DXA) were analyzed with a structural analysis program. The program analyzes narrow (3 mm wide) regions at specific locations across the proximal femur to measure bone mineral density (BMD) as well as cross-sectional areas (CSAs), cross-sectional moments of inertia (CSMI), section moduli, subperiosteal widths, and estimated mean cortical thickness. Measurements are reported here on a non-Hispanic white subgroup of 2719 men and 2904 women for a cortical region across the proximal shaft 2 cm distal to the lesser trochanter and a mixed cortical/trabecular region across the narrowest point of the femoral neck. Apparent age trends in BMD and section modulus were studied for both regions by sex after correction for body weight. The BMD decline with age in the narrow neck was similar to that seen in the Hologic neck region; BMD in the shaft also declined, although at a slower rate. A different pattern was seen for section modulus; furthermore, this pattern depended on sex. Specifically, the section modulus at both the narrow neck and the shaft regions remains nearly constant until the fifth decade in females and then declined at a slower rate than BMD. In males, the narrow neck section modulus declined modestly until the fifth decade and then remained nearly constant whereas the shaft section modulus was static until the fifth decade and then increased steadily. The apparent mechanism for the discord between BMD and section modulus is a linear expansion in subperiosteal diameter in both sexes and in both regions, which tends to mechanically offset net loss of medullary bone mass. These results suggest that aging loss of bone mass in the hip does not necessarily mean reduced mechanical strength. Femoral neck section moduli in the elderly are on the average within 14% of young values in females and within 6% in males. [source] Heterogeneity in the Growth of the Axial and Appendicular Skeleton in Boys: Implications for the Pathogenesis of Bone Fragility in MenJOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2000Michelle Bradney Abstract Men with spine fractures have reduced vertebral body (VB) volume and volumetric bone mineral density (vBMD). Men with hip fractures have reduced femoral neck (FN) volume and vBMD, site-specific deficits that may have their origins in growth. To describe the tempo of growth in regional bone size, bone mineral content (BMC), and vBMD, we measured bone length, periosteal and endocortical diameters, BMC, and vBMD using dual-energy X-ray absorptiometry in 184 boys aged between 7 and 17 years. Before puberty, growth was more rapid in the legs than in the trunk. During puberty, leg growth slowed while trunk length accelerated. Bone size was more advanced than BMC in all regions, being ,70% and ,35% of their predicted peaks at 7 years of age, respectively. At 16 years of age, bone size had reached its adult peak while BMC was still 10% below its predicted peak. The legs accounted for 48%, whereas the spine accounted for 10%, of the 1878 g BMC accrued between 7 and 17 years. Peripubertal growth contributed (i) 55% of the increase in leg length but 78% of the mineral accrued and (ii) 69% of the increase in spine length but 87% of the mineral accrued. Increased metacarpal and midfemoral cortical thickness was caused by respective periosteal expansion with minimal change in the endocortical diameter. Total femur and VB vBMD increased by 30,40% while size and BMC increased by 200,300%. Thus, growth builds a bigger but only slightly denser skeleton. We speculate that effect of disease or a risk factor during growth depends on the regions maturational stage at the time of exposure. The earlier growth of a regions size than mass, and the differing growth patterns from region to region, predispose to site-specific deficits in bone size, vBMD, or both. Regions further from their peak may be more severely affected by illness than those nearer completion of growth. Bone fragility in old age is likely to have its foundations partly established during growth. [source] Mice Lacking the Plasminogen Activator Inhibitor 1 Are Protected from Trabecular Bone Loss Induced by Estrogen DeficiencyJOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2000E. Daci Abstract Bone turnover requires the interaction of several proteases during the resorption phase. Indirect evidence suggests that the plasminogen activator/plasmin pathway is involved in bone resorption and turnover, and recently we have shown that this cascade plays a role in the degradation of nonmineralized bone matrix in vitro. To elucidate the role of the plasminogen activator inhibitor 1 (PAI-1) in bone turnover in vivo, bone metabolism was analyzed in mice deficient in the expression of PAI-1 gene (PAI-1,/,) at baseline (8-week-old mice) and 4 weeks after ovariectomy (OVX) or sham operation (Sham) and compared with wild-type (WT) mice. PAI-1 inactivation was without any effect on bone metabolism at baseline or in Sham mice. However, significant differences were observed in the response of WT and PAI-1,/, mice to ovariectomy. The OVX WT mice showed, as expected, decreased trabecular bone volume (BV/TV) and increased osteoid surface (OS/BS) and bone formation rate (BFR), as assessed by histomorphometric analysis of the proximal tibial metaphysis. In contrast, no significant change in any of the histomorphometric variables studied was detected in PAI-1,/, mice after ovariectomy. As a result, the OVX PAI-1,/, had a significantly higher BV/TV, lower OS/BS, lower mineral apposition rate (MAR) and BFR when compared with the OVX WT mice. However, a comparable decrease in the cortical thickness was observed in OVX PAI-1,/, and WT mice. In addition, the cortical mineral content and density assessed in the distal femoral metaphysis by peripheral quantitative computed tomography (pQCT), decreased significantly after ovariectomy, without difference between PAI-1,/, mice and WT mice. In conclusion, basal bone turnover and bone mass are only minimally affected by PAI-1 inactivation. In conditions of estrogen deficiency, PAI-1 inactivation protects against trabecular bone loss but does not affect cortical bone loss, suggesting a site-specific role for PAI-1 in bone turnover. [source] Reduced cortical bone mass in mice with inactivation of interleukin-4 and interleukin-13JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2007Carl-Johan Silfverswärd Abstract The aim of the present study was to study the in vivo role of IL-4 and IL-13 on bone metabolism. The skeletal phenotypes of male and female IL-13,/, (n,=,7+7), IL-4,/,IL-13,/, (n,=,7+7), and WT (n,=,7+7) mice were compared. Analysis was made at 6 weeks of age (juvenile) by pQCT, and at 20 weeks of age (adult) by pQCT, biomechanical testing, and by S-IGF-1 and S-Osteocalcin measurements. The skeletal phenotype was affected only in adult male IL-4,/,IL-13,/, mice. These animals displayed a reduction in cortical bone mineral content (BMC) of both the tibia and the femur, as measured by mid-diaphyseal pQCT scans, compared with WT mice (tibia ,8.2%; femur ,8.5%; p,<,0.01). This reduction in cortical BMC was due to a decreased cross-sectional area as a result of a reduced cortical thickness. The mechanical strength of the cortical bone, tested by three-point-bending at the mid-diaphyseal region of the femurs, demonstrated a significant reduction of displacement at failure (,11.4%), maximal load at failure (,10.6%), and total energy until failure (,29.4%). S-IGF-1 and S-Osteocalcin levels as well as trabecular bone mineral density (tvBMD) were unaffected in adult male IL-4,/,IL-13,/, mice. IL-4,/,IL-13,/, male mice show adult onset reduction of cortical bone mass and strength, indicating that the two anti-inflammatory Th2 cytokines IL-4 and IL-13 are involved in the regulation of bone remodeling. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25: 725,731, 2007 [source] Effect of cortical thickness and cancellous bone density on the holding strength of internal fixator screwsJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2004J. Seebeck Abstract Internal fixators are a new class of implants designed to preserve the periosteal blood supply of the bone. In contrast to conventional plate fixation in which the screws have spherical heads and are loaded mainly by axial pullout forces, screws in internal fixators are "locked" within the plate and therefore subjected to axial as well as bending loads. In this study the ultimate loads of screws of a commercially available internal fixator system were tested in a pullout (n = 72) and cantilever bending mode (n = 72) in metaphyseal and diaphyseal regions of four pairs of human tibiae with different bone qualities. Cortical thickness and cancellous bone density were determined at the screw insertion sites. Stepwise multiple linear regression revealed that cortical thickness and cancellous density can explain 93% and 98% of the variance of the ultimate load of the screws in an axial pullout and cantilever bending mode. Screws in internal fixators are better suited to transmit shear forces and thereby make better use of the strength potential of bone than screws used in conventional plate fixation: this is especially advantageous when bone strength is reduced, e.g. due to osteoporosis. © 2004 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved. [source] |