Home About us Contact | |||
Cortical Responses (cortical + response)
Selected AbstractsUndulating toe movements in brain death,EUROPEAN JOURNAL OF NEUROLOGY, Issue 11 2004G. Saposnik For many years, death implied immobility. Nevertheless, there are anecdotal reports of spontaneous or reflex movements (SRMs) in patients with Brain death (BD). The presence of some movements can preclude the diagnosis of BD, and consequently, the possibility of organ donation for transplantation. McNair and Meador [(1992), Mov Dord7: 345,347] described the presence of undulating toe flexion movements (UTF) in BD patients. UTF consists in a sequential brief plantar flexion of the toes. Our aim was to determine the frequency, characteristics and predisposing factors of UTF movements in a prospective multicenter cohort study of patients with BD. Patients with confirmed diagnosis of BD were assessed to evaluate the presence of UTF using a standardized protocol. All patients had a routine laboratory evaluation, CT scan of the head, and EEG. Demographic, clinical, hemodynamic and blood gas concentration factors were analyzed. amongst 107 BD patients who fulfilled the AAN requirements, 47 patients (44%) had abnormal movements. UTF was observed in 25 (23%) being the most common movement (53%). Early evaluation (OR 4.3, CI95% 1.5,11.9) was a predictor of UTF in a multivariate regression model. The somato-sensory evoked potential (SSEPs) as well as brainstem auditory evoked potentials (BAEPs) did not elicit a cortical response in studied patients with UTF. This spinal reflex is probably integrated in the L5 and S1 segments of the spinal cord. Abnormal movements are common in BD, being present in more than 40% of individuals. UTF was the most common spinal reflex. In our sample, early evaluation was a predictor of UTF. Health care professionals, especially those involved in organ procurement for transplantation, must be aware of this sign. The presence of this motor phenomenon does not preclude the diagnosis of BD. [source] Aging and the interaction of sensory cortical function and structureHUMAN BRAIN MAPPING, Issue 1 2009Ann M. Peiffer Abstract Even the healthiest older adults experience changes in cognitive and sensory function. Studies show that older adults have reduced neural responses to sensory information. However, it is well known that sensory systems do not act in isolation but function cooperatively to either enhance or suppress neural responses to individual environmental stimuli. Very little research has been dedicated to understanding how aging affects the interactions between sensory systems, especially cross-modal deactivations or the ability of one sensory system (e.g., audition) to suppress the neural responses in another sensory system cortex (e.g., vision). Such cross-modal interactions have been implicated in attentional shifts between sensory modalities and could account for increased distractibility in older adults. To assess age-related changes in cross-modal deactivations, functional MRI studies were performed in 61 adults between 18 and 80 years old during simple auditory and visual discrimination tasks. Results within visual cortex confirmed previous findings of decreased responses to visual stimuli for older adults. Age-related changes in the visual cortical response to auditory stimuli were, however, much more complex and suggested an alteration with age in the functional interactions between the senses. Ventral visual cortical regions exhibited cross-modal deactivations in younger but not older adults, whereas more dorsal aspects of visual cortex were suppressed in older but not younger adults. These differences in deactivation also remained after adjusting for age-related reductions in brain volume of sensory cortex. Thus, functional differences in cortical activity between older and younger adults cannot solely be accounted for by differences in gray matter volume. Hum Brain Mapp 2009. © 2007 Wiley-Liss, Inc. [source] Aged mice have enhanced endocortical response and normal periosteal response compared with young-adult mice following 1 week of axial tibial compressionJOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2010Michael D Brodt Abstract With aging, the skeleton may lose its ability to respond to positive mechanical stimuli. We hypothesized that aged mice are less responsive to loading than young-adult mice. We subjected aged (22 months) and young-adult (7 months) BALB/c male mice to daily bouts of axial tibial compression for 1 week and evaluated cortical and trabecular responses using micro,computed tomography (µCT) and dynamic histomorphometry. The right legs of 95 mice were loaded for 60 rest-inserted cycles per day to 8, 10, or 12,N peak force (generating mid-diaphyseal strains of 900 to 1900 µ, endocortically and 1400 to 3100 µ, periosteally). At the mid-diaphysis, mice from both age groups showed a strong anabolic response on the endocortex (Ec) and periosteum (Ps) [Ec.MS/BS and Ps. MS/BS: loaded (right) versus control (left), p,<,.05]. Generally, bone formation increased with increasing peak force. At the endocortical surface, contrary to our hypothesis, aged mice had a significantly greater response to loading than young-adult mice (Ec.MS/BS and Ec.BFR/BS: 22 months versus 7 months, p,<,.001). Responses at the periosteal surface did not differ between age groups (p,>,.05). The loading-induced increase in bone formation resulted in increased cortical area in both age groups (loaded versus control, p,<,.05). In contrast to the strong cortical response, loading only weakly stimulated trabecular bone formation. Serial (in vivo) µCT examinations at the proximal metaphysis revealed that loading caused a loss of trabecular bone in 7-month-old mice, whereas it appeared to prevent bone loss in 22-month-old mice. In summary, 1 week of daily tibial compression stimulated a robust endocortical and periosteal bone-formation response at the mid-diaphysis in both young-adult and aged male BALB/c mice. We conclude that aging does not limit the short-term anabolic response of cortical bone to mechanical stimulation in our animal model. © 2010 American Society for Bone and Mineral Research [source] Influences of postconceptional age and postnatal experience on the development of auditory recognition memory in the newborn infantDEVELOPMENTAL PSYCHOBIOLOGY, Issue 3 2002Raye-Ann deRegnier Abstract We evaluated the effects of postconceptional age and postnatal experience on the development of neonatal auditory recognition memory. Three groups were tested: a premature newborn group (tested at 35,38 weeks postconceptional age, ,1 week old), a full-term newborn group (tested at 39,42 weeks postconceptional age, ,1 week old), and a full-term experienced group (tested at 39,42 weeks postconceptional age, >1 week old; range 8,30 days). Event-related potentials were collected while infants listened to the maternal voice alternating with a stranger's voice. Postconceptional age was correlated with the development of recognition memory for the maternal voice while there were qualitative effects of postnatal experience on latency measurements. Maturity of auditory cortical responses was not correlated with recognition memory abilities. We conclude that maturation of the recognition memory pathways is primarily a function of postconceptional age with qualitative effects of postnatal experience. Maturation of the auditory recognition memory pathway is not contingent upon maturation of the "P2" peak thought to arise from primary auditory cortex. © 2002 Wiley Periodicals, Inc. Dev Psychobiol 41: 216,225, 2002. Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/dev.10070 [source] Immature cortical responses to auditory stimuli in specific language impairment: evidence from ERPs to rapid tone sequencesDEVELOPMENTAL SCIENCE, Issue 4 2004D.V.M. Bishop Event-related potentials (ERPs) to tone pairs and single tones were measured for 16 participants with specific language impairment (SLI) and 16 age-matched controls aged from 10 to 19 years. The tone pairs were separated by an inter-stimulus interval (ISI) of 20, 50 or 150 ms. The intraclass correlation (ICC) was computed for each participant between the ERP to a single tone and the ERP to the tone pair. A high ICC indicates that the brain response to a tone pair is similar to that for a single tone. ICCs were significantly higher at short than at long ISIs. At 50-ms ISI, ICCs were higher for younger than older participants. Age and ISI interacted with SLI status: ERPs of older participants with SLI differed from age-matched controls, and resembled ERPs of younger controls, consistent with a theory of immature auditory processing in SLI. [source] Cortical auditory dysfunction in benign rolandic epilepsyEPILEPSIA, Issue 6 2008Dana F. Boatman Summary Purpose: To evaluate cortical auditory function, including speech recognition, in children with benign rolandic epilepsy (BRE). Methods: Fourteen children, seven patients with BRE and seven matched controls, underwent audiometric and behavioral testing, simultaneous EEG recordings, and auditory-evoked potential recordings with speech and tones. Speech recognition was tested under multiple listening conditions. Results: All participants demonstrated normal speech recognition abilities in quiet, as well as normal peripheral and subcortical auditory function. BRE patients performed significantly worse than controls when speech recognition was tested under adverse listening conditions, including background noise. Five BRE patients who were impaired on two or more tests had centrotemporal spiking on awake EEG. There were no significant group differences in the latency or amplitude of early N100 cortical responses to speech or tones. Conversely, the mismatch negativity, a preattentive index of cortical processing that is elicited passively, was absent or prolonged for speech, but not tones, in BRE patients as compared to controls. Discussion: Children with BRE demonstrated specific speech recognition impairments. Our evoked potential findings indicate that these behavioral impairments reflect dysfunction of nonprimary auditory cortex and cannot be attributed solely to attention difficulties. A possible association between auditory impairments and centrotemporal spiking (>1/min) on awake EEG was identified. The pattern of speech recognition impairments observed is a known risk factor for academic difficulties in school-age children. Our results underscore the importance of comprehensive auditory testing, using behavioral and electrophysiological measures, in children with BRE. [source] Callosal contribution to ocular dominance in rat primary visual cortexEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2010Chiara Cerri Abstract Ocular dominance (OD) plasticity triggered by monocular eyelid suture is a classic paradigm for studying experience-dependent changes in neural connectivity. Recently, rodents have become the most popular model for studies of OD plasticity. It is therefore important to determine how OD is determined in the rodent primary visual cortex. In particular, cortical cells receive considerable inputs from the contralateral hemisphere via callosal axons, but the role of these connections in controlling eye preference remains controversial. Here we have examined the role of callosal connections in binocularity of the visual cortex in naïve young rats. We recorded cortical responses evoked by stimulation of each eye before and after acute silencing, via stereotaxic tetrodotoxin (TTX) injection, of the lateral geniculate nucleus ipsilateral to the recording site. This protocol allowed us to isolate visual responses transmitted via the corpus callosum. Cortical binocularity was assessed by visual evoked potential (VEP) and single-unit recordings. We found that acute silencing of afferent geniculocortical input produced a very significant reduction in the contralateral-to-ipsilateral (C/I) VEP ratio, and a marked shift towards the ipsilateral eye in the OD distribution of cortical cells. Analysis of absolute strength of each eye indicated a dramatic decrease in contralateral eye responses following TTX, while those of the ipsilateral eye were reduced but maintained a more evident input. We conclude that callosal connections contribute to normal OD mainly by carrying visual input from the ipsilateral eye. These data have important implications for the interpretation of OD plasticity following alterations of visual experience. [source] A neuroanatomically grounded Hebbian-learning model of attention,language interactions in the human brainEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2008Max Garagnani Abstract Meaningful familiar stimuli and senseless unknown materials lead to different patterns of brain activation. A late major neurophysiological response indexing ,sense' is the negative component of event-related potential peaking at around 400 ms (N400), an event-related potential that emerges in attention-demanding tasks and is larger for senseless materials (e.g. meaningless pseudowords) than for matched meaningful stimuli (words). However, the mismatch negativity (latency 100,250 ms), an early automatic brain response elicited under distraction, is larger to words than to pseudowords, thus exhibiting the opposite pattern to that seen for the N400. So far, no theoretical account has been able to reconcile and explain these findings by means of a single, mechanistic neural model. We implemented a neuroanatomically grounded neural network model of the left perisylvian language cortex and simulated: (i) brain processes of early language acquisition and (ii) cortical responses to familiar word and senseless pseudoword stimuli. We found that variation of the area-specific inhibition (the model correlate of attention) modulated the simulated brain response to words and pseudowords, producing either an N400- or a mismatch negativity-like response depending on the amount of inhibition (i.e. available attentional resources). Our model: (i) provides a unifying explanatory account, at cortical level, of experimental observations that, so far, had not been given a coherent interpretation within a single framework; (ii) demonstrates the viability of purely Hebbian, associative learning in a multilayered neural network architecture; and (iii) makes clear predictions on the effects of attention on latency and magnitude of event-related potentials to lexical items. Such predictions have been confirmed by recent experimental evidence. [source] Hostility- and gender-related differences in oscillatory responses to emotional facial expressionsAGGRESSIVE BEHAVIOR, Issue 6 2009Gennady G. Knyazev Abstract Hostility is associated with biases in the perception of emotional facial expressions, such that ambiguous or neutral expressions tend to be perceived as threatening or angry. In this study, the effects of hostility and gender on the perception of angry, neutral, and happy faces and on the oscillatory dynamics of cortical responses elicited by these presentations were investigated using time,frequency decomposition by means of wavelet transforms. Feelings of hostility predisposed subjects to perceive happy and neutral faces as less friendly. This effect was more pronounced in women. In hostile subjects, presentation of emotional facial expressions also evoked stronger posterior synchronization in the theta and diminished desynchronization in the alpha band. This may signify a prevalence of emotional responding over cognitive processing. These effects were also more pronounced in females. Hostile females, but not hostile males, additionally showed a widespread synchronization in the alpha band. This synchronization is tentatively explained as a manifestation of inhibitory control which is present in aggressive females, but not in aggressive males. Aggr. Behav. 35:502,513, 2009. © 2009 Wiley-Liss, Inc. [source] Noradrenergic depletion increases inflammatory responses in brain: effects on I,B and HSP70 expressionJOURNAL OF NEUROCHEMISTRY, Issue 2 2003Michael T. Heneka Abstract The inflammatory responses in many cell types are reduced by noradrenaline (NA) binding to ,-adrenergic receptors. We previously demonstrated that cortical inflammatory responses to aggregated amyloid beta (A,) are increased if NA levels were first depleted by lesioning locus ceruleus (LC) noradrenergic neurons, which replicates the loss of LC occurring in Alzheimer's disease. To examine the molecular basis for increased responses, we used the selective neurotoxin DSP4 to lesion the LC, and then examined levels of putative anti-inflammatory molecules. Inflammatory responses were achieved by injection of aggregated A,1,42 peptide and IL-1, into frontal cortex, which induced neuronal inducible nitric oxide synthase (iNOS) and microglial IL-1, expression. DSP4-treatment reduced basal levels of nuclear factor kappa B (NF-,B) inhibitory I,B proteins, and of heat shock protein (HSP)70. Inflammatory responses were prevented by co-injection (ibuprofen or ciglitzaone) or oral administration (pioglitazone) of peroxisome proliferator-activated receptor gamma (PPAR,) agonists. Treatment with PPAR, agonists restored I,B,, I,B,, and HSP70 levels to values equal or above those observed in control animals, and reduced activation of cortical NF-,B. These results suggest that noradrenergic depletion reduces levels of anti-inflammatory molecules which normally limit cortical responses to A,, and that PPAR, agonists can reverse that effect. These findings suggest one mechanism by which PPAR, agonists could provide benefit in neurological diseases having an inflammatory component. [source] Bladder control, urgency, and urge incontinence: Evidence from functional brain imaging,NEUROUROLOGY AND URODYNAMICS, Issue 6 2008Derek Griffiths Abstract Aim To review brain imaging studies of bladder control in subjects with normal control and urge incontinence; to define a simple model of supraspinal bladder control; and to propose a neural correlate of urgency and possible origins of urge incontinence. Methods Review of published reports of brain imaging relevant to urine storage, and secondary analyses of our own recent observations. Results In a simple model of normal urine storage, bladder and urethral afferents received in the periaqueductal gray (PAG) are mapped in the insula, forming the basis of sensation; the anterior cingulate gyrus (ACG) provides monitoring and control; the prefrontal cortex makes voiding decisions. The net result, as the bladder fills, is inhibition of the pontine micturition center (PMC) and of voiding, together with gradual increase in insular response, corresponding to increasing desire to void. In urge-incontinent subjects, brain responses differ. At large bladder volumes and strong sensation, but without detrusor overactivity (DO), most cortical responses become exaggerated, especially in ACG. This may be both a learned reaction to previous incontinence episodes and the neural correlate of urgency. The neural signature of DO itself seems to be prefrontal deactivation. Possible causes of urge incontinence include dysfunction of prefrontal cortex or limbic system, suggested by weak responses and/or deactivation, as well as abnormal afferent signals or re-emergence of infantile reflexes. Conclusions Bladder control depends on an extensive network of brain regions. Dysfunction in various parts may contribute to urge incontinence, suggesting that there are different phenotypes requiring different treatments. Neurourol. Urodynam. 27:466,474, 2008. © 2007 Wiley-Liss, Inc. [source] Cortical processing of near-threshold tactile stimuli: An MEG studyPSYCHOPHYSIOLOGY, Issue 3 2010Anja Wühle Abstract In the present study we tested the applicability of a paired-stimulus paradigm for the investigation of near-threshold (NT) stimulus processing in the somatosensory system using magnetoencephalography. Cortical processing of the NT stimuli was studied indirectly by investigating the impact of NT stimuli on the source activity of succeeding suprathreshold test stimuli. We hypothesized that cortical responses evoked by test stimuli are reduced due to the preactivation of the same finger representation by the preceding NT stimulus. We observed attenuation of the magnetic responses in the secondary somatosensory (SII) cortex, with stronger decreases for perceived than for missed NT stimuli. Our data suggest that processing in the primary somatosensory cortex including recovery lasts for <200 ms. Conversely, the occupancy of SII lasts ,500 ms, which points to its role in temporal integration and conscious perception of sensory input. [source] Status 5 Years after Bilateral Hand TransplantationAMERICAN JOURNAL OF TRANSPLANTATION, Issue 4 2006S. Schneeberger Graft survival and function early after hand transplantation is good. It remains unknown, however, whether long-term survival is limited by chronic rejection. We here describe the clinical course and the status 5 years after bilateral hand transplantation with emphasis on immunosuppression (IS), function, morphology and graft vascular changes. Clinical observation, evaluation of hand function, skin biopsies, X-ray, ultrasound, angiography, CT angiography, electrophysiologic studies including compound motor and sensory action potentials (CMAP, CSAP) and somatosensory evoked potentials were performed and results recorded at regular intervals. Following reduction of IS one mild (grade II) rejection episode occurred at 4 years. Subsequently, skin histology remained normal and without signs of chronic rejection. Hand function continuously improved during the first 3 years and remained stable with minor improvement thereafter. CMAP and CSAP progressively increased during the observation period. Latencies of the cortical responses were prolonged but amplitudes were within normal range. Investigation of hand vessels revealed no signs of occlusion but showed revascularization of a primarily occluded right radialis artery. Motor and sensory function improved profoundly between years 1 and 5 after hand transplantation. No signs whatsoever of chronic rejection have been observed. [source] Prognostic value of brain diffusion-weighted imaging after cardiac arrest,ANNALS OF NEUROLOGY, Issue 4 2009Christine A. C. Wijman MD Objective Outcome prediction is challenging in comatose postcardiac arrest survivors. We assessed the feasibility and prognostic utility of brain diffusion-weighted magnetic resonance imaging (DWI) during the first week. Methods Consecutive comatose postcardiac arrest patients were prospectively enrolled. AWI data of patients who met predefined specific prognostic criteria were used to determine distinguishing apparent diffusion coefficient (ADC) thresholds. Group 1 criteria were death at 6 months and absent motor response or absent pupillary reflexes or bilateral absent cortical responses at 72 hours or vegetative at 1 month. Group 2 criterion was survival at 6 months with a Glasgow Outcome Scale score of 4 or 5 (group 2A) or 3 (group 2B). The percentage of voxels below different ADC thresholds was calculated at 50 × 10,6 mm2/sec intervals. Results Overall, 86% of patients underwent DWI. Fifty-one patients with 62 brain DWIs were included. Forty patients met the specific prognostic criteria. The percentage of brain volume with an ADC value less than 650 to 700 × 10,6mm2/sec best differentiated between Group 1 and Groups 2A and 2B combined (p < 0.001), whereas the 400 to 450 × 10,6mm2/sec threshold best differentiated between Groups 2A and 2B (p = 0.003). The ideal time window for prognostication using DWI was between 49 and 108 hours after the arrest. When comparing DWI in this time window with the 72-hour neurological examination, DWI improved the sensitivity for predicting poor outcome by 38% while maintaining 100% specificity (p = 0.021). Interpretation Quantitative DWI in comatose postcardiac arrest survivors holds promise as a prognostic adjunct. Ann Neurol 2009;65:394,402 [source] |