Home About us Contact | |||
Cortical Nuclei (cortical + nucleus)
Selected AbstractsSomatosensory Nuclei of the Manatee Brainstem and ThalamusTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 9 2007Diana K. Sarko Abstract Florida manatees have an extensive, well-developed system of vibrissae distributed over their entire bodies and especially concentrated on the face. Although behavioral and anatomical assessments support the manatee's reliance on somatosensation, a systematic analysis of the manatee thalamus and brainstem areas dedicated to tactile input has never been completed. Using histochemical and histological techniques (including stains for myelin, Nissl, cytochrome oxidase, and acetylcholinesterase), we characterized the relative size, extent, and specializations of somatosensory regions of the brainstem and thalamus. The principal somatosensory regions of the brainstem (trigeminal, cuneate, gracile, and Bischoff's nucleus) and the thalamus (ventroposterior nucleus) were disproportionately large relative to nuclei dedicated to other sensory modalities, providing neuroanatomical evidence that supports the manatee's reliance on somatosensation. In fact, areas of the thalamus related to somatosensation (the ventroposterior and posterior nuclei) and audition (the medial geniculate nucleus) appeared to displace the lateral geniculate nucleus dedicated to the subordinate visual modality. Furthermore, it is noteworthy that, although the manatee cortex contains Rindenkerne (barrel-like cortical nuclei located in layer VI), no corresponding cell clusters were located in the brainstem ("barrelettes") or thalamus ("barreloids"). Anat Rec, 290:1138,1165, 2007. © 2007 Wiley-Liss, Inc. [source] Immunohistochemical parcellation of the ferret (Mustela putorius) visual cortex reveals substantial homology with the cat (Felis catus)THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 21 2010Jihane Homman-Ludiye Abstract Electrophysiological mapping of the adult ferret visual cortex has until now determined the existence of 12 retinotopically distinct areas; however, in the cat, another member of the Carnivora, 20 distinct visual areas have been identified by using retinotopic mapping and immunolabeling. In the present study, the immunohistochemical approach to demarcate the areal boundaries of the adult ferret visual cortex was applied in order to overcome the difficulties in accessing the sulcal surfaces of a small, gyrencephalic brain. Nonphosphorylated neurofilament (NNF) expression profiles were compared with another classical immunostain of cortical nuclei, Cat-301 chondroitin sulfate proteoglycan (CSPG). Together, these two markers reliably demarcated the borders of the 12 previously defined areas and revealed further arealization beyond those borders to a total of 19 areas: 21a and 21b; the anterolateral, posterolateral, dorsal, and ventral lateral suprasylvian areas (ALLS, PLLS, DLS, and VLS, respectively); and the splenial and cingulate visual areas (SVA and CVA). NNF expression profile and location of the newly defined areas correlate with previously defined areas in the cat. Moreover, NNF and Cat-301 together revealed discrete expression domains in the posteroparietal (PP) cortex, demarcating four subdivisions in the caudal lateral and medial domains (PPcL and PPcM) and rostral lateral and medial domains (PPrL and PPrM), where only two retinotopic maps have been previously identified (PPc and PPr). Taken together, these studies suggest that NNF and Cat-301 can illustrate the homology between cortical areas in different species and draw out the principles that have driven evolution of the visual cortex. J. Comp. Neurol. 518:4439,4462, 2010. © 2010 Wiley-Liss, Inc. [source] The Cocaine- and Amphetamine-regulated Transcript (CART) Immunoreactivity in the Amygdala of the PigANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 5 2010M. Równiak With 5 figures and 1 table Summary The distribution and morphology of neurons containing cocaine- and amphetamine-regulated transcript (CART) was investigated in the pig amygdala. CART- immunoreactive (CART-IR) cell bodies were rarely observed in the pig amygdala and most often they were present in the posterior (small-celled) parts of the basolateral and basomedial nuclei. In all other subdivisions only a small number of randomly scattered pericarya were present. In every region studied the CART-IR neurons formed a heterogeneous population consisting mostly of small, rounded or slightly elongated cell bodies, with a few poorly branched, smooth dendrites. In general, the morphological features of these cells clearly resembled non-pyramidal Golgi type II interneurons. Some randomly scattered CART-IR cell bodies were significantly larger and they demonstrated features of pyramidal-like Golgi type I projecting neurons. The highest densities of CART-IR fibres were evident within the central and medial nuclei. Moderate to high expression was found within the large-celled part of the basolateral nucleus and moderate to low levels in the lateral, basomedial and cortical nuclei. The routine double-labelling studies with antisera directed against CART and somatostatin (SOM), or neuropeptide Y (NPY), or cholecystokinin (CCK), or vasoactive intestinal peptide (VIP), or substance P (SP) demonstrated that, in general, these peptides do not co-exist in the CART-IR neurons. However, small subpopulations of the CART-IR fibres contained SOM, CCK, VIP or SP together. [source] Species-specific chemosignals evoke delayed excitation of the vomeronasal amygdala in freely-moving female ratsJOURNAL OF NEUROCHEMISTRY, Issue 3 2006Carla Mucignat-Caretta Abstract Male rat chemosignals attract females and influence their reproductive status. Through the accessory olfactory bulb and its projection target, the posteromedial cortical nucleus of the amygdala (PMCo), species-specific chemosignals detected by the vomeronasal organ (VNO) may reach the hypothalamus. To test this hypothesis in vivo, behavioural activation and neurotransmitter release in the PMCo were simultaneously monitored in freely moving female oestrus rats exposed to either rat or mouse urinary stimuli, or to odorants. Plasma levels of the luteinizing hormone were subsequently monitored. All stimuli induced an immediate behavioural activation, but only species-specific chemosignals led to a delayed behavioural activation. This biphasic behavioural activation was accompanied by a VNO-mediated release of the excitatory amino acids, aspartate and glutamate, in the PMCo. The late behavioural and neurochemical activation was followed by an increase in the levels of circulating luteinizing hormone. In conclusion, these data show that only species-specific chemosignals induce a delayed behavioural activation and excitatory activation of the PMCo, which is dependent on an intact VNO. [source] |