Home About us Contact | |||
Cortical Level (cortical + level)
Selected AbstractsEnhancing multisensory spatial orienting by brain polarization of the parietal cortexEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2010Nadia Bolognini Abstract Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that induces polarity-specific excitability changes in the human brain, therefore altering physiological, perceptual and higher-order cognitive processes. Here we investigated the possibility of enhancing attentional orienting within and across different sensory modalities, namely visual and auditory, by polarization of the posterior parietal cortex (PPC), given the putative involvement of this area in both unisensory and multisensory spatial processing. In different experiments, we applied anodal or sham tDCS to the right PPC and, for control, anodal stimulation of the right occipital cortex. Using a redundant signal effect (RSE) task, we found that anodal tDCS over the right PPC significantly speeded up responses to contralateral targets, regardless of the stimulus modality. Furthermore, the effect was dependant on the nature of the audiovisual enhancement, being stronger when subserved by a probabilistic mechanism induced by blue visual stimuli, which probably involves processing in the PPC. Hence, up-regulating the level of excitability in the PPC by tDCS appears a successful approach for enhancing spatial orienting to unisensory and crossmodal stimuli. Moreover, audiovisual interactions mostly occurring at a cortical level can be selectively enhanced by anodal PPC tDCS, whereas multisensory integration of stimuli, which is also largely mediated at a subcortical level, appears less susceptible to polarization of the cortex. [source] A neuroanatomically grounded Hebbian-learning model of attention,language interactions in the human brainEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2008Max Garagnani Abstract Meaningful familiar stimuli and senseless unknown materials lead to different patterns of brain activation. A late major neurophysiological response indexing ,sense' is the negative component of event-related potential peaking at around 400 ms (N400), an event-related potential that emerges in attention-demanding tasks and is larger for senseless materials (e.g. meaningless pseudowords) than for matched meaningful stimuli (words). However, the mismatch negativity (latency 100,250 ms), an early automatic brain response elicited under distraction, is larger to words than to pseudowords, thus exhibiting the opposite pattern to that seen for the N400. So far, no theoretical account has been able to reconcile and explain these findings by means of a single, mechanistic neural model. We implemented a neuroanatomically grounded neural network model of the left perisylvian language cortex and simulated: (i) brain processes of early language acquisition and (ii) cortical responses to familiar word and senseless pseudoword stimuli. We found that variation of the area-specific inhibition (the model correlate of attention) modulated the simulated brain response to words and pseudowords, producing either an N400- or a mismatch negativity-like response depending on the amount of inhibition (i.e. available attentional resources). Our model: (i) provides a unifying explanatory account, at cortical level, of experimental observations that, so far, had not been given a coherent interpretation within a single framework; (ii) demonstrates the viability of purely Hebbian, associative learning in a multilayered neural network architecture; and (iii) makes clear predictions on the effects of attention on latency and magnitude of event-related potentials to lexical items. Such predictions have been confirmed by recent experimental evidence. [source] Auditory activation of ,visual' cortical areas in the blind mole rat (Spalax ehrenbergi)EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2002Gilles Bronchti Abstract The mole rat (Spalax ehrenbergi) is a subterranean rodent whose adaptations to its fossorial life include an extremely reduced peripheral visual system and an auditory system suited for the perception of vibratory stimuli. We have previously shown that in this blind rodent the dorsal lateral geniculate nucleus, the primary visual thalamic nucleus of sighted mammals, is activated by auditory stimuli. In this report we focus on the manifestation of this cross-modal compensation at the cortical level. Cyto- and myeloarchitectural analyses of the occipital area showed that despite the almost total blindness of the mole rat this area has retained the organization of a typical mammalian primary visual cortex. Application of the metabolic marker 2-deoxyglucose and electrophysiological recording of evoked field potentials and single-unit activity disclosed that a considerable part of this area is activated by auditory stimuli. Previous neuronal tracing studies had revealed the origin of the bulk of this auditory input to be the dorsal lateral geniculate nucleus which itself receives auditory input from the inferior colliculus. [source] Abnormal plasticity of the sensorimotor cortex to slow repetitive transcranial magnetic stimulation in patients with writer's crampMOVEMENT DISORDERS, Issue 1 2007Tobias Bäumer MD Abstract Previous studies demonstrated functional abnormalities in the somatosensory system, including a distorted functional organization of the somatosensory cortex (S1) in patients with writer's cramp. We tested the hypothesis that these functional alterations render S1 of these patients more susceptible to the "inhibitory" effects of subthreshold 1 Hz repetitive transcranial magnetic stimulation (rTMS) given to S1. Seven patients with writer's cramp and eight healthy subjects were studied. Patients also received rTMS to the motor cortex hand area (M1). As an outcome measure, short-latency afferent inhibition (SAI) was tested. SAI was studied in the relaxed first dorsal interosseous muscle using conditioning electrical stimulation of the index finger and TMS pulses over the contralateral M1. Baseline SAI did not differ between groups. S1 but not M1 rTMS reduced SAI in patients. rTMS had no effects on SAI in healthy subjects. Because SAI is mediated predominantly at a cortical level in the sensorimotor cortex, we conclude that there is an abnormal responsiveness of this area to 1 Hz rTMS in writer's cramp, which may represent a trait toward maladaptive plasticity in the sensorimotor system in these patients. © 2006 Movement Disorder Society [source] Dystonia: A disorder of motor programming or motor execution?MOVEMENT DISORDERS, Issue 6 2002Petr Ka, ovský MD Abstract For some time, dystonia has been seen as purely a motor disorder. Relatively novel concepts published approximately 10 years ago also presumed that in the development of dystonic dyskinesias, only motor behaviour was abnormal. Neurophysiological observations of various types of dystonic disorders, which were performed using sophisticated electromyography, polymyography, H-reflex examination, long-latency reflex, etc., as well as new insights into the behaviour of dystonia, have urged the inclusion of sensory (particularly somatosensory) mechanisms into the pathophysiological background of dystonia. The major role has been considered to be played by abnormal proprioceptive input by means of the Ia proprioceptive afferents, with the source of this abnormality found in the abnormal processing of muscle spindle afferent information. However, neurophysiological investigations have also provided evidence that the abnormality in the central nervous system is located not only at the spinal and subcortical level, but also at the cortical level; specifically, the cortical excitability and intracortical inhibition have been revealed as abnormal. This evidence was revealed by SEP recordings, paired transcranial magnetic stimulation recordings, and BP and CNV recordings. The current concept of dystonic movement connects the abnormal function of somatosensory pathways and somatosensory analysers with the dystonic performance of motor action, which is based on the abnormality of sensorimotor integration. © 2002 Movement Disorder Society [source] Electrophysiological evidence for altered early cerebral somatosensory signal processing in schizophreniaPSYCHOPHYSIOLOGY, Issue 3 2004Till D. Waberski Abstract Various studies have indicated an impairment of sensory signal processing in schizophrenic patients. Anatomical and functional imaging studies have indicated morphological and metabolic abnormalities in the thalamus in schizophrenia. Other results give evidence for an additional role of cortical dysfunction in sensory processing in schizophrenia. Advanced analysis of human median nerve somatosensory evoked potentials (SEPs) reveals a brief oscillatory burst of low-amplitude and high-frequency activity (,600 Hz), the so-called high frequency oscillations (HFOs). The present study explores the behavior of HFOs in a cohort of schizophrenic patients in comparison to a group of controls. HFOs in the group of patients appeared with a delayed latency. In the low-frequency part of the SEPs an increase in amplitude was found. These results are interpreted to reflect a lack of somatosensory inhibition in the somatosensory pathway, either at a thalamic or a cortical level. [source] Early cortical bone healing around loaded titanium implants: a histological study in the rabbitCLINICAL ORAL IMPLANTS RESEARCH, Issue 2 2009Elke Slaets Abstract Objectives: To identify the role of immediate implant loading on the early phases of the bone healing responses. Material and methods: Implants were placed in rabbit tibial diaphyses and left to heal for 3, 7, 14, 28 or 42 days. Half of the animals received an immediate loading protocol of 2.2 N at 3 Hz for 1800 cycles and 5 days/week, whereas the others served as unloaded controls. Histological assessment was combined with histomorphometrical measurements. Results: At early time-points, an endosteal and periosteal new bone formation was found, while the cortex itself contained damaged osteocytes. At later time-points, new bone formation was also found at the cortical level itself. Differences between groups were found mainly in this new bone formation process, with larger reactions for the endosteal and periosteal bone in the loaded group after 28 and 42 days, respectively. At the end-point of the experiment, bone formation at the cortical level was reduced in the loaded group compared with the control group. Conclusions: These results show that the immediate loading protocol caused no differences in the sequential events leading to osseointegration in cortical bone. However, the processes of new bone formation originating from the endosteum and the periosteum lasted longer compared with the unloaded controls. [source] Increased neurogenesis and brain-derived neurotrophic factor in neurokinin-1 receptor gene knockout miceEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2003Sara Morcuende Abstract It has previously been shown that chronic treatment with antidepressant drugs increases neurogenesis and levels of brain-derived neurotrophic factor in the hippocampus. These changes have been correlated with changes in learning and long-term potentiation and may contribute to the therapeutic efficacy of antidepressant drug treatment. Recently, antagonists at the neurokinin-1 receptor, the preferred receptor for the neuropeptide substance P, have been shown to have antidepressant activity. Mice with disruption of the neurokinin-1 receptor gene are remarkably similar both behaviourally and neurochemically to mice maintained chronically on antidepressant drugs. We demonstrate here that there is a significant elevation of neurogenesis but not cell survival in the hippocampus of neurokinin-1 receptor knockout mice. Neurogenesis can be increased in wild-type but not neurokinin-1 receptor knockout mice by chronic treatment with antidepressant drugs which preferentially target noradrenergic and serotonergic pathways. Hippocampal levels of brain-derived neurotrophic factor are also two-fold higher in neurokinin-1 receptor knockout mice, whereas cortical levels are similar. Finally, we examined hippocampus-dependent learning and memory but found no clear enhancement in neurokinin-1 receptor knockout mice. These data argue against a simple correlation between increased levels of neurogenesis or brain-derived neurotrophic factor and mnemonic processes in the absence of increased cell survival. They support the hypothesis that increased neurogenesis, perhaps accompanied by higher levels of brain-derived neurotrophic factor, may contribute to the efficacy of antidepressant drug therapy. [source] Oxygen resuscitation does not ameliorate neonatal hypoxia/ischemia-induced cerebral edemaJOURNAL OF NEUROSCIENCE RESEARCH, Issue 9 2010Diana Carolina Ferrari Abstract Neonatal hypoxia/ischemia (HI) is a common cause of cognitive and behavioral deficits in children with hyperoxia treatment (HHI) being the current therapy for newborn resuscitation. HI induces cerebral edema that is associated with poor neurological outcomes. Our objective was to characterize cerebral edema after HI and determine the consequences of HHI (40% or 100% O2). Dry weight analyses showed cerebral edema 1 to 21 days after HI in the ipsilateral cortex; and 3 to 21 days after HI in the contralateral cortex. Furthermore, HI increased blood-brain barrier (BBB) permeability 1 to 7 days after HI, leading to bilateral cortical vasogenic edema. HHI failed to prevent HI-induced increase in BBB permeability and edema development. At the molecular level, HI increased ipsilateral, but not contralateral, AQP4 cortical levels at 3 and up to 21 days after HI. HHI treatment did not further affect HI-induced changes in AQP4. In addition, we observed developmental increases of AQP4 accompanied by significant reduction in water content and increase permeability of the BBB. Our results suggest that the ipsilateral HI-induced increase in AQP4 may be beneficial and that its absence in the contralateral cortex may account for edema formation after HI. Finally, we showed that HI induced impaired motor coordination 21 days after the insult and HHI did not ameliorate this behavioral outcome. We conclude that HHI treatment is effective as a resuscitating therapy, but does not ameliorate HI-induced cerebral edema and impaired motor coordination. © 2010 Wiley-Liss, Inc. [source] Dietary supplementation with melatonin reduces levels of amyloid beta-peptides in the murine cerebral cortexJOURNAL OF PINEAL RESEARCH, Issue 4 2004Debomoy K. Lahiri Abstract:, Melatonin levels decrease with aging in mice. Dietary supplementation with melatonin has recently been shown to result in a significant rise in levels of endogenous melatonin in the serum and all other tissue samples tested. Herein, the effects of dietary melatonin on brain levels of nitric oxide synthase, synaptic proteins and amyloid beta-peptides (A,) were determined in mice. Melatonin supplementation did not significantly change cerebral cortical levels of nitric oxide synthase or synaptic proteins such as synaptophysin and SNAP-25. Increased brain melatonin concentrations however, led to a significant reduction in levels of toxic cortical A, of both short and long forms which are involved in amyloid depositions and plaque formation in Alzheimer's diseases. Thus, melatonin supplementation may retard neurodegenerative changes associated with brain aging. Depletion of melatonin in the brain of aging mice may in part account for this adverse change. [source] Somatosensory disinhibition in dystoniaMOVEMENT DISORDERS, Issue 4 2001Emma Frasson MD Abstract Despite the fact that somatosensory processing is inherently dependent on inhibitory functions, only excitatory aspects of the somatosensory feedback have so far been assessed in dystonic patients. We studied the recovery functions of spinal N13, brainstem P14, parietal N20, P27, and frontal N30 somatosensory evoked potentials (SEPs) after paired median nerve stimulation in 10 patients with dystonia and in 10 normal subjects. The recovery functions were assessed (conditioning stimulus: S1; test stimulus: S2) at interstimuls intervals (ISIs) of 5, 20, and 40 ms. SEPs evoked by S2 were calculated by subtracting the SEPs of the S1 only response from the SEPs of the response to the paired stimuli (S1 + S2), and their amplitudes were compared with those of the control response (S1) at each ISI considered. This ratio, (S2/S1)*100, investigates changes in the excitability of the somatosensory system. No significant difference was found in SEP amplitudes for single stimulus (S1) between dystonic patients and normal subjects. The (S2/S1)*100 ratio at the ISI of 5 ms did not significantly differ between dystonic patients and normal subjects, but at ISIs of 20 and 40 ms, this ratio was significantly higher in patients than in normals for spinal N13 and cortical N20, P27, N30 SEPs. These findings suggest that in dystonia there is an impaired inhibition at spinal and cortical levels of the somatosensory system which would lead to an abnormal sensory assistance to the ongoing motor programs, ultimately resulting in the motor abnormalities present in this disease. © 2001 Movement Disorder Society. [source] 2126: Retinal and cortical functions in adult mice lacking cannabinoid receptorsACTA OPHTHALMOLOGICA, Issue 2010C CASANOVA Purpose Cannabinoid receptor type 1 (CB1R) has been localized in the adult retina of rodents. It is expressed in cones, horizontal, bipolar, some amacrine and ganglion cells. The expression of the cannabinoid receptor type 2 (CB2R) mRNA in the retina of adult rats was also reported. The goal of the present study was to investigate the functional roles of CB1R and CB2R in the retina by comparing retinal electrophysiological responses and cortical optical signals in normal and genetically modified mice. Methods Experiments were conducted on four different groups of C57BL/6 mice: CB1R wild type (WT), CB1R knockout (KO), CB2R WT and KO. Scotopic electroretinograms (ERG) luminance-response functions and photopic ERGs were recorded. In a subset of CB1 groups, intrinsic signals acquired by optical brain imaging were used to determine spatial frequency, contrast sensitivity and retinotopic maps in the visual cortex. Results The CB1R KO retina showed a stronger photopic response. No differences were observed for scotopic responses. For the CB2R groups, the scotopic b-wave response was stronger in the KO mice. No differences could be seen between visual cortices maps with respect to SF and contrast sensitivity. Retinotopic maps differed only along the azimuth. Significant differences were observed between hemodynamic response functions. Conclusion These results indicate that CB receptors can play a regulatory effect on the neurovascular coupling at the retinal and cortical levels and on the functional organization of the mice visual cortex along the azimuth Axis.(NSERC) [source] |