Home About us Contact | |||
Cortical Interneurons (cortical + interneuron)
Selected AbstractsFACS-array gene expression analysis during early development of mouse telencephalic interneuronsDEVELOPMENTAL NEUROBIOLOGY, Issue 4 2008Eric D. Marsh Abstract Cortical interneuron dysfunction has been implicated in multiple human disorders including forms of epilepsy, mental retardation, and autism. Although significant advances have been made, understanding the biologic basis of these disorders will require a level of anatomic, molecular, and genetic detail of interneuron development that currently does not exist. To further delineate the pathways modulating interneuron development we performed fluorescent activated cell sorting (FACs) on genetically engineered mouse embryos that selectively express green fluorescent protein (GFP) in developing interneurons followed by whole genome microarray expression profiling on the isolated cells. Bioinformatics analysis revealed expression of both predicted and unexpected genes in developing cortical interneurons. Two unanticipated pathways discovered to be up regulated prior to interneurons differentiating in the cortex were ion channels/neurotransmitters and synaptic/vesicular related genes. A significant association of neurological disease related genes to the population of developing interneurons was found. These results have defined new and potentially important data on gene expression changes during the development of cortical interneurons. In addition, these data can be mined to uncover numerous novel genes involved in the generation of interneurons and may suggest genes/pathways potentially involved in a number of human neurological disorders. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source] Secreted factors from ventral telencephalon induce the differentiation of GABAergic neurons in cortical culturesEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2006H.-h. Trinh Abstract It is widely believed that the pyramidal cells and interneurons of the cerebral cortex are distinct in their origin, lineage and genetic make up. In view of these findings, the current thesis is that the phenotype determination of cortical neurons is primarily directed by genetic mechanisms. Using in vitro assays, the present study demonstrates that secreted factors from ganglionic eminence (GE) of the ventral telencephalon have the potency to induce the differentiation of a subset of cortical neurons towards ,-aminobutyric acid (GABA)ergic lineage. Characterization of cortical cultures that were exposed to medium derived from GE illustrated a significant increase in the number of GABA-, calretinin- and calbindin-positive neurons. Calcium imaging together with pharmacological studies showed that the application of exogenous medium significantly elevated the intracellular calcium transients in cortical neurons through the activation of ionotropic glutamate receptors. The increase in GABA+ neurons appeared to be associated with the elevated calcium activity; treatment with blockers specific for glutamate receptors abolished both the synchronized transients and reduced the differentiation of GABAergic neurons. Such studies demonstrate that although intrinsic mechanisms determine the fate of cortical interneurons, extrinsic factors have the potency to influence their neurochemical differentiation and contribute towards their molecular diversity. [source] Transient maternal hypothyroxinemia at onset of corticogenesis alters tangential migration of medial ganglionic eminence-derived neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2005Estela Cuevas Abstract Correct positioning of cortical neurons during development depends on the radial migration of the projection neurons and on the coordinated tangential and radial migrations of the subcortically generated interneurons. As previously shown, a transient and moderate maternal deficiency in thyroxin during early corticogenesis alters the radial migration of projection neurons. To determine if a similar effect might also affect tangential migration of medial ganglionic eminence (MGE)-derived neurons at the origin of cortical interneurons, explants of MGE from green fluorescent protein (GFP)-transgenic embryos were implanted into flat cortical mounts from wild-type embryos. The distances covered and the preferential migration (medially) of GFP-MGE neurons from embryos of hypothyroxinemic dams are not affected in their tangential migration into wild-type control cortices. In contrast, when GFP-MGE neurons from embryos of control or hypothyroxinemic dams migrate within cortices from embryos of hypothyroxinemic dams, the GFP-MGE-derived neurons lose their preferential direction of migration, although they still migrate for long distances throughout the cortex. Our results show that maternal hypothyroxinemia alters the tangential migration of GFP-MGE-derived neurons in the neocortex of the progeny and suggest that this alteration is not derived from the migratory neurons themselves but through undefined short- and long-range cues responsible for the guidance of their migration. [source] Cellular prion protein/laminin receptor: distribution in adult central nervous system and characterization of an isoform associated with a subtype of cortical neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2004Hasna Baloui Abstract The 67-kDa LR protein was originally discovered as a non-integrin laminin receptor. Several more recent in vitro studies demonstrated the function of 67-kDa LR and its related ,precursor' form 37-kDa LRP as receptors of cellular prion protein and their implication in abnormal prion protein propagation in vitro. In addition, expression of both proteins was shown to increase considerably in the brain of scrapie-infected mice and hamsters. While LRP/LR are thus likely to play important roles in neuronal cell adhesion, survival and homeostasis and during pathological disorders, little is known so far about their fine cellular distribution in adult central nervous system. Using immunocytochemistry and western blotting, we show here that the 67-kDa LR is the major receptor form in adult rat brain and spinal cord, expressed within the cytoplasm and at the plasma membrane of most neurons and in a subset of glial cells. The overall distribution of LR correlates well with that reported for laminin-1 but also with brain regions classically associated with prion-related neurodegeneration. In contrast to LR, the 37-kDa LRP form is much less abundant in adult than in postnatal central nervous system. Characterization of a novel antibody allowed us to study the distribution across tissues of cell membrane-associated LRP. Interestingly, this form is almost exclusively found on a subclass of parvalbumin-immunoreactive cortical interneurons known to degenerate during the early stages of Creutzfeldt-Jakob disease. Our demonstration of local differences in the expression of particular LRP/LR isoforms may be a first step towards unraveling their specific molecular interactions. [source] |