Cortical Impact (cortical + impact)

Distribution by Scientific Domains


Selected Abstracts


Antisense knockdown of the glial glutamate transporter GLT-1 exacerbates hippocampal neuronal damage following traumatic injury to rat brain

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2001
Vemuganti L. Raghavendra Rao
Abstract Traumatic injury to rat brain induced by controlled cortical impact (CCI) results in chronic neuronal death in the hippocampus. In the normal brain, glutamate transporters actively clear the glutamate released synaptically to prevent receptor overactivation and excitotoxicity. Glutamate transporter 1 (GLT-1) is the most abundant and active glutamate transporter, which mediates the bulk of glutamate uptake. CCI injury significantly decreased GLT-1 mRNA (by 49,66%, P < 0.05) and protein (by 29,44%, P < 0.05) levels in the ipsilateral hippocampus, compared with either the respective contralateral hippocampus or the sham-operated control, 24,72 h after the injury. CCI injury in rats infused with GLT-1 antisense oligodeoxynucleotides (ODNs) exacerbated the hippocampal neuronal death and mortality, compared with the GLT-1 sense/random ODN-infused controls. At 7 days after the injury, hippocampal neuronal numbers were significantly lower in the CA1 (reduced by 32%, P < 0.05), CA2 (by 45%, P < 0.01), CA3 (by 68%, P < 0.01) and dentate gyrus (by 31%, P < 0.05) in GLT-1 antisense ODN-infused rats, compared with the GLT-1 sense/random ODN-infused controls. This study suggested a role for GLT-1 dysfunction in promoting the hippocampal neuronal death after traumatic brain injury. [source]


Mitochondrial dysfunction early after traumatic brain injury in immature rats

JOURNAL OF NEUROCHEMISTRY, Issue 5 2007
Courtney L. Robertson
Abstract Mitochondria play central roles in acute brain injury; however, little is known about mitochondrial function following traumatic brain injury (TBI) to the immature brain. We hypothesized that TBI would cause mitochondrial dysfunction early (<4 h) after injury. Immature rats underwent controlled cortical impact (CCI) or sham injury to the left cortex, and mitochondria were isolated from both hemispheres at 1 and 4 h after TBI. Rates of phosphorylating (State 3) and resting (State 4) respiration were measured with and without bovine serum albumin. The respiratory control ratio was calculated (State 3/State 4). Rates of mitochondrial H2O2 production, pyruvate dehydrogenase complex enzyme activity, and cytochrome c content were measured. Mitochondrial State 4 rates (ipsilateral/contralateral ratios) were higher after TBI at 1 h, which was reversed with bovine serum albumin. Four hours after TBI, pyruvate dehydrogenase complex activity and cytochrome c content (ipsilateral/contralateral ratios) were lower in TBI mitochondria. These data demonstrate abnormal mitochondrial function early (,4 h) after TBI in the developing brain. Future studies directed at reversing mitochondrial abnormalities could guide neuroprotective interventions after pediatric TBI. [source]


Neuroprotection with caspase-9 inhbition against in vitro and in vivo trauma

JOURNAL OF NEUROCHEMISTRY, Issue 2002
R. A. Wallis
Objective:, To evaluate the neuroprotective efficacy of the cell-permeable caspase-9 inhibitor, LEHD-CHO, against in vitro and in vivo traumatic neuronal injury. Methods:, The neuroprotective potential of LEHD-CHO was assessed in vitro using rat hippocampal slices. CA1 orthodromic and antidromic population spike (PS) amplitude was monitored before and after fluid percussion injury in slices treated with or without LEHD-CHO. Final recovery of PS amplitude was assessed 95 min after trauma. Studies of in vivo neuroprotection with LEHD-CHO utilized a model of controlled cortical impact (CCI). Rats were given either LEHD-CHO (10 nmol icv) or an equal volume of vehicle at 5 min following CCI. Rats were perfused 24 h after CCI and brains were processed for histological examination. Results:, LEHD-CHO provided significant protection against loss of CA1 evoked response after fluid percussion. The EC50 for LEHD-CHO protection of CA1 orthodromic and antidromic PS amplitude against trauma was 2.1 ,m and 2.3 ,m. Protection extended to preservation of LTP after trauma. In vivo treatment with LEHD-CHO significantly decreased the appearance of eosinophilic cells in the CA1 region after CCI from 131 ± 23 cells in vehicle-treated animals to 24 ± 5 in LEHD-CHO treated animals. Extensive labelling with TUNEL staining was seen in vehicle-treated animals, whereas sections from LEHD-CHO treated animals demonstrated little staining. Conclusions:, These findings indicate that the caspase 9 inhibitor LHED-CHO provides concentration-dependent protection against in vitro CA1 neuronal injury, which extends to protection against in vivo CA1 injury from CCI. They further suggest that inhibition of caspase 9 may be a useful treatment strategy for traumatic brain injury. Acknowledgement:, Supported by VA Research and UCLA BIRC. [source]


Selective death of newborn neurons in hippocampal dentate gyrus following moderate experimental traumatic brain injury

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 10 2008
Xiang Gao
Abstract Memory impairment is one of the most significant residual deficits following traumatic brain injury (TBI) and is among the most frequent complaints heard from patients and their relatives. It has been reported that the hippocampus is particularly vulnerable to TBI, which results in hippocampus-dependent cognitive impairment. There are different regions in the hippocampus, and each region is composed of different cell types, which might respond differently to TBI. However, regional and cell type-specific neuronal death following TBI is not well described. Here, we examined the distribution of degenerating neurons in the hippocampus of the mouse brain following controlled cortical impact (CCI) and found that the majority of degenerating neurons observed were in the dentate gyrus after moderate (0.5 mm cortical deformation) CCI-TBI. In contrast, there were only a few degenerating neurons observed in the hilus, and we did not observe any degenerating neurons in the CA3 or CA1 regions. Among those degenerating cells in the dentate gyrus, about 80% of them were found in the inner granular neuron layer. Analysis with cell type-specific markers showed that most of the degenerating neurons in the inner granular neuron layer are newborn immature neurons. Further quantitative analysis shows that the number of newborn immature neurons in the dentate gyrus is dramatically decreased in the ipsilateral hemisphere compared with the contralateral side. Collectively, our data demonstrate the selective death of newborn immature neurons in the hippocampal dentate gyrus following moderate injury with CCI in mice. This selective vulnerability of newborn immature dentate neurons may contribute to the persistent impairment of learning and memory post-TBI and provide an innovative target for neuroprotective treatment strategies. © 2008 Wiley-Liss, Inc. [source]


Fasting is neuroprotective following traumatic brain injury,

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2008
Laurie M. Davis
Abstract To determine the neuroprotective effect of fasting after traumatic brain injury (TBI) and to elucidate the potential underlying mechanisms, we used a controlled cortical impact (CCI) injury model to induce either a moderate or a severe injury to adult male Sprague Dawley rats. Tissue-sparing assessments were used to determine the level of neuroprotection of fasting, hypoglycemia (insulin 10 U), or ketone (1.66 mmoles/kg/day or 0.83 mmoles/kg/day; D-beta-hydroxtbutyrate) administration. Mitochondrial isolation and respiratory studies were utilized to determine the functionality of mitochondria at the site of injury. We also investigated biomarkers of oxidative stress, such as lipid/protein oxidation, reactive oxygen species (ROS) production, and intramitochondrial calcium load, as a secondary measure of mitochondrial homeostasis. We found that fasting animals for 24 hr, but not 48 hr, after a moderate (1.5 mm), but not severe (2.0 mm), CCI resulted in a significant increase in tissue sparing. This 24-hr fast also decreased biomarkers of oxidative stress and calcium loading and increased mitochondrial oxidative phosphorylation in mitochondria isolated from the site of injury. Insulin administration, designed to mimic the hypoglycemic effect seen during fasting did not result in significant tissue sparing after moderate CCI injury and in fact induced increased mortality at some injection time points. However, the administration of ketones resulted in increased tissue sparing after moderate injury. Fasting for 24 hr confers neuroprotection, maintains cognitive function, and improves mitochondrial function after moderate (1.5 mm) TBI. The underlying mechanism appears to involve ketosis rather than hypoglycemia. © 2008 Wiley-Liss, Inc. [source]