Cortex Function (cortex + function)

Distribution by Scientific Domains


Selected Abstracts


Impairments in visual discrimination after perirhinal cortex lesions: testing ,declarative' vs. ,perceptual-mnemonic' views of perirhinal cortex function

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2003
Timothy J. Bussey
Abstract Two experiments tested the predictions of ,declarative' vs. ,perceptual-mnemonic' views of perirhinal cortex function. The former view predicts that perirhinal cortex lesions should impair rapidly learned, but not more slowly learned, visual discriminations, whereas the latter view predicts that impairments should be related not to speed of learning but to perceptual factors. It was found that monkeys with perirhinal cortex lesions were impaired in the acquisition and performance of slowly learned, perceptually difficult greyscale picture discriminations, but were not impaired in the acquisition of rapidly learned, perceptually easier discriminations. In addition, these same monkeys were not impaired in the acquisition or performance of difficult colour or size discriminations, indicating that the observed pattern of impairments was not due to ceiling effects or difficulty per se. These findings, taken together, are consistent with the ,perceptual-mnemonic' view that the perirhinal cortex is involved in both perception and memory, but are not consistent with the ,declarative' view that the perirhinal cortex is important exclusively for declarative memory, having little or no role in perception. Moreover, the results are consistent with the more specific proposal that the perirhinal cortex contributes to the solution of complex visual discriminations with a high degree of ,feature ambiguity', a property of visual discrimination problems that can emerge when features of an object are rewarded when part of one object, but not when part of another. These and other recent findings suggest the need for a revision of prevailing views regarding the neural organization of perception and memory. [source]


The organization of visual object representations: a connectionist model of effects of lesions in perirhinal cortex

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2002
Timothy J. Bussey
Abstract We have developed a simple connectionist model based on the idea that perirhinal cortex has properties similar to other regions in the ventral visual stream, or ,what' pathway. The model is based on the assumption that representations in the ventral visual stream are organized hierarchically, such that representations of simple features of objects are stored in caudal regions of the ventral visual stream, and representations of the conjunctions of these features are stored in more rostral regions. We propose that a function of these feature conjunction representations is to help to resolve ,feature ambiguity', a property of visual discrimination problems that can emerge when features of an object predict a given outcome (e.g. reward) when part of one object, but predict a different outcome when part of another object. Several recently reported effects of lesions of perirhinal cortex in monkeys have provided key insights into the functions of this region. In the present study these effects were simulated by comparing the performance of connectionist networks before and after removal of a layer of units corresponding to perirhinal cortex. The results of these simulations suggest that effects of lesions in perirhinal cortex on visual discrimination may be due not to the impairment of a specific type of learning or memory, such as declarative or procedural, but to compromising the representations of visual stimuli. Furthermore, we propose that attempting to classify perirhinal cortex function as either ,perceptual' or ,mnemonic' may be misguided, as it seems unlikely that these broad constructs will map neatly onto anatomically defined regions of the brain. [source]


Perirhinal cortex resolves feature ambiguity in complex visual discriminations

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2002
Timothy J. Bussey
Abstract The present experiment tested predictions of a ,perceptual,mnemonic/feature conjunction' (PMFC) model of perirhinal cortex function. The model predicts that lesions of perirhinal cortex should disrupt complex visual discriminations with a high degree of ,feature ambiguity', a property of visual discrimination problems that can emerge when features of an object are rewarded when they are part of one object, but not when part of another. As feature ambiguity is thought to be the critical factor, such effects should be independent of the number of objects to be discriminated. This was tested directly, by assessing performance of control monkeys and monkeys with aspiration lesions of perirhinal cortex on a series of concurrent discriminations in which the number of object pairs was held constant, but the degree of feature ambiguity was varied systematically. Monkeys were tested in three conditions: Maximum Feature Ambiguity, in which all features were explicitly ambiguous (AB+, CD+, BC,, AD,; the biconditional problem); Minimum Feature Ambiguity, in which no features were explicitly ambiguous (AB+, CD+, EF,, GH,); and Intermediate Feature Ambiguity, in which half the features were explicitly ambiguous (AB+, CD+, CE,, AF,). The pattern of results closely matched that predicted by simulations using a connectionist network: monkeys with perirhinal cortex lesions were unimpaired in the Minimum Feature Ambiguity condition, mildly impaired in the Intermediate Feature Ambiguity condition and severely impaired in the Maximum Feature Ambiguity condition. These results confirm the predictions of the PMFC model, and force a reconsideration of prevailing views regarding perirhinal cortex function. [source]


Sensitivity of prefrontal cortex to changes in target probability: A functional MRI study

HUMAN BRAIN MAPPING, Issue 1 2001
B. J. Casey
Abstract Electrophysiological studies suggest sensitivity of the prefrontal cortex to changes in the probability of an event. The purpose of this study was to determine if subregions of the prefrontal cortex respond differentially to changes in target probabilities using functional magnetic resonance imaging (fMRI). Ten right-handed adults were scanned using a gradient-echo, echo planar imaging sequence during performance of an oddball paradigm. Subjects were instructed to respond to any letter but "X". The frequency of targets (i.e., any letter but X) varied across trials. The results showed that dorsal prefrontal regions were active during infrequent events and ventral prefrontal regions were active during frequent events. Further, we observed an inverse relation between the dorsal and ventral prefrontal regions such that when activity in dorsal prefrontal regions increased, activity in ventral prefrontal regions decreased, and vice versa. This finding may index competing cognitive processes or capacity limitations. Most importantly, these findings taken as a whole suggest that any simple theory of prefrontal cortex function must take into account the sensitivity of this region to changes in target probability. Hum. Brain Mapping 13:26,33, 2001. © 2001 Wiley-Liss, Inc. [source]