Home About us Contact | |||
Cord Motion (cord + motion)
Selected AbstractsEffects of cord motion on diffusion imaging of the spinal cordMAGNETIC RESONANCE IN MEDICINE, Issue 2 2006Hardave S. Kharbanda Abstract Measurement of diffusion and its dependence on direction has become an important tool for clinical and research studies of the brain. Diffusion imaging of the spinal cord may likewise prove useful as an indicator of tissue damage and axonal integrity; however, it is more challenging to perform diffusion imaging in the cord than in the brain. Here we report a study of the effects of motion on single-shot fast spin echo (FSE) diffusion tensor imaging (DTI) of the spinal cord. Diffusion imaging was performed at four different times in the cardiac cycle both without and with velocity compensation of the diffusion gradients. Uncompensated diffusion images demonstrated substantial signal loss artifacts in the cord that were strongly dependent on the delay after the pulse-oximeter trigger. Quantitative diffusion analysis was also strongly affected by this motion artifact. The use of flow-compensated gradients helped to restore normal signal in the cord, especially at particular trigger delays. Theoretical arguments suggest that improved spatial resolution may help eliminate this signal loss. Even with higher spatial resolution, motion-related signal attenuation may still occur in diffusion imaging of pathologies that alter the motion of the cord. However, this same cord motion may contain diagnostically valuable information when probed using appropriate diffusion imaging approaches. Magn Reson Med, 2006. © 2006 Wiley-Liss, Inc. [source] Sleep-related stridor due to dystonic vocal cord motion and neurogenic tachypnea/tachycardia in multiple system atrophyMOVEMENT DISORDERS, Issue 5 2007Roberto Vetrugno MD Abstract Sleep-disordered breathing and sleep-related motor phenomena are part of the clinical spectrum of multiple system atrophy (MSA). Stridor has been attributed to denervation of laryngeal muscles or instead to dystonic vocal cord motion. We studied 3 patients with nocturnal stridor in the setting of MSA. All patients underwent nocturnal videopolysomnography (VPSG) with breathing and heart rate, O2 saturation and intra-esophageal pressure recordings, and simultaneous EMG recordings of the posterior cricoarytenoid, cricothyroid, and thyroarytenoid muscles and continuous vocal cord motion evaluation by means of fiberoptic laryngoscopy. VPSG/EMG and fiberoptic laryngoscopy documented normal vocal cord motion without denervation during wake and stridor only during sleep when hyperactivation of vocal cords adductors appeared in the absence of significant O2 desaturation. All patients had tachycardia and tachypnea and paradoxical breathing during sleep, erratic intercostalis and diaphragmatic EMG activity and Rem sleep behavior disorder. One of the patients had restless legs syndrome with periodic limb movement during sleep and excessive fragmentary hypnic myoclonus. In conclusion, our patients with MSA had nocturnal stridor due to sleep-related laryngeal dystonia. Stridor was associated with other abnormal sleep-related respiratory and motor disorders, suggesting an impairment of homeostatic brainstem integration in MSA. © 2007 Movement Disorder Society [source] |