Home About us Contact | |||
Coral Hosts (coral + hosts)
Selected AbstractsIncongruent patterns of genetic connectivity among four ophiuroid species with differing coral host specificity on North Atlantic seamountsMARINE ECOLOGY, Issue 2010Walter Cho Abstract Seamounts are considered to play a defining role in the evolution and diversity of marine fauna, acting as ,stepping-stones' for dispersal, regional centers of genetic isolation and speciation, and refugia for deep-sea populations. This study focused on the patterns of dispersal and genetic connectivity of four seamount ophiuroid species (Asteroschema clavigera, Ophiocreas oedipus, Ophioplinthaca abyssalis, and Ophioplinthaca chelys) displaying differing levels of associative (epifaunal) specificity to cold-water coral hosts inhabiting the New England and Corner Rise Seamount chains, and Muir Seamount in the Northwestern Atlantic. Analyses of mt16S and mtCOI revealed evidence for recent population expansion and high gene flow for all four species. However, species-specific genetic differentiation was significant based on seamount region and depth. Significant differences were found among regional seamount groups for A. clavigera, within seamount regions and seamounts for O. chelys, among 250-m depth intervals for A. clavigera, among 100-m depth intervals for O. oedipus, and there were indications of isolation by distance for A. clavigera and O. oedipus. In addition, A. clavigera and O. oedipus, broadcast spawners with high fidelity to specific coral hosts, displayed predominantly westward historical migration, whereas the ophioplinthacids, with lower host-specificity, displayed predominantly eastward migration. No congruent patterns of historical migration were evident among species and seamounts, yet these patterns can be correlated with species-specific host specificity, specific depth strata, and dispersal strategies. Conservation efforts to protect seamount ecosystems should promote multi-species approaches to genetic connectivity, and consider the impact of the ,dependence' of biodiversity on host fauna in these vulnerable marine ecosystems. [source] Sponges boring into precious corals: an overview with description of a new species of Alectona (Demospongiae, Alectonidae) and a worldwide identification key for the genusMARINE ECOLOGY, Issue 2 2008Barbara Calcinai Abstract Precious corals represent peculiar substrata for several species of boring sponges that exploit their carbonatic scleraxis, strongly decreasing their commercial value. Here we describe a new species of the genus Alectona from Japan recorded in a colony of Paracorallium japonicum (Kishinouye, 1903). The spicular complement of the new species consists of diactinal spicules covered by mushroom-like tubercles, often modified into styloid forms, and fusiform amphiasters with two or sometimes four verticils, each generally made up of six short tubercled rays. A complete survey of the literature on boring sponges recorded in precious corals in the Mediterranean Sea and Pacific Ocean indicates that the species of the family Alectonidae are the most strictly associated to this kind of substratum. Their world distribution, in fact, partially or totally overlap that of their coral hosts. [source] A restoration genetics guide for coral reef conservationMOLECULAR ECOLOGY, Issue 12 2008ILIANA B. BAUMS Abstract Worldwide degradation of coral reef communities has prompted a surge in restoration efforts. They proceed largely without considering genetic factors because traditionally, coral populations have been regarded as open over large areas with little potential for local adaptation. Since, biophysical and molecular studies indicated that most populations are closed over shorter time and smaller spatial scales. Thus, it is justified to re-examine the potential for site adaptation in corals. There is ample evidence for differentiated populations, inbreeding, asexual reproduction and the occurrence of ecotypes, factors that may facilitate local adaptation. Discovery of widespread local adaptation would influence coral restoration projects mainly with regard to the physical and evolutionary distance from the source wild and/or captive bred propagules may be moved without causing a loss of fitness in the restored population. Proposed causes for loss of fitness as a result of (plant) restoration efforts include founder effects, genetic swamping, inbreeding and/or outbreeding depression. Direct evidence for any of these processes is scarce in reef corals due to a lack of model species that allow for testing over multiple generations and the separation of the relative contributions of algal symbionts and their coral hosts to the overall performance of the coral colony. This gap in our knowledge may be closed by employing novel population genetic and genomics approaches. The use of molecular tools may aid managers in the selection of appropriate propagule sources, guide spatial arrangement of transplants, and help in assessing the success of coral restoration projects by tracking the performance of transplants, thereby generating important data for future coral reef conservation and restoration projects. [source] Recognizing diversity in coral symbiotic dinoflagellate communitiesMOLECULAR ECOLOGY, Issue 6 2007AMY M. APPRILL Abstract A detailed understanding of how diversity in endosymbiotic dinoflagellate communities maps onto the physiological range of coral hosts is critical to predicting how coral reef ecosystems will respond to climate change. Species-level taxonomy of the dinoflagellate genus Symbiodinium has been predominantly examined using the internal transcribed spacer (ITS) region of the nuclear ribosomal array (rDNA ITS2) and downstream screening for dominant types using denaturing gradient gel electrophoresis (DGGE). Here, ITS2 diversity in the communities of Symbiodinium harboured by two Hawaiian coral species was explored using direct sequencing of clone libraries. We resolved sixfold to eightfold greater diversity per coral species than previously reported, the majority of which corresponds to a novel and distinct phylogenetic lineage. We evaluated how these sequences migrate in DGGE and demonstrate that this method does not effectively resolve this diversity. We conclude that the Porites spp. examined here harbour diverse assemblages of novel Symbiodinium types and that cloning and sequencing is an effective methodological approach for resolving the complexity of endosymbiotic dinoflagellate communities harboured by reef corals. [source] |