Home About us Contact | |||
Copy Number Loss (copy + number_loss)
Selected AbstractsFocal 9p instability in hematologic neoplasias revealed by comparative genomic hybridization and single-nucleotide polymorphism microarray analysesGENES, CHROMOSOMES AND CANCER, Issue 4 2010Anu Usvasalo Copy number losses in chromosome arm 9p are well-known aberrations in malignancies, including leukemias. The CDKN2A gene is suggested to play a key role in these aberrations. In this study overviewing 9p losses in hematologic neoplasias, we introduce the term focal 9p instability to indicate multiple areas of copy number loss or homozygous loss within a larger heterozygous one in 9p. We have used microarray comparative genomic hybridization to study patients with acute lymphoblastic leukemia (ALL, n = 140), acute myeloid leukemia (n = 50), chronic lymphocytic leukemia (n = 20), and myelodysplastic syndromes (n = 37). Our results show that 9p instability is restricted to ALL. In total, 58/140 (41%) patients with ALL had a loss in 9p. The 9p instability was detected in 19% of the patients with ALL and always included homozygous loss of CDKN2A along with loss of CDKN2B. Other possibly important genes included MTAP, IFN, MLLT3, JAK2, PTPLAD2, and PAX5. 13/27 (48%) patients with the instability had the BCR/ABL1 fusion gene or other oncogene-activating translocation or structural aberrations. Two patients had homozygous loss of hsa-mir ,31, a microRNA known to regulate IKZF1. IKZF1 deletion at 7p12.1 was seen in 10 (37%) patients with the 9p instability. These findings suggest that, in ALL leukemogenesis, loss of CDKN2A and other target genes in the instability region is frequently associated with BCR/ABL1 and IKZF1 dysfunction. The multiple mechanisms leading to 9p instability including physical or epigenetic loss of the target genes, loss of the microRNA cluster, and the role of FRA9G fragile site are discussed. © 2009 Wiley-Liss, Inc. [source] Genome-wide scan identifies a copy number variable region at 3q26 that regulates PPM1L in APC mutation-negative familial colorectal cancer patientsGENES, CHROMOSOMES AND CANCER, Issue 2 2010L. F. Thean Familial adenomatous polyposis (FAP) is an autosomal dominantly inherited form of colorectal cancer (CRC) caused by mutation in the adenomatous polyposis coli (APC) gene. However, APC mutations are not detected in 10,50% of FAP patients. We searched for a new cancer gene by performing genome-wide genotyping on members of an APC mutation-negative FAP variant family and ethnicity-matched healthy controls. No common copy number change was found in all affected members using the unaffected members and healthy controls as baseline. A 111 kb copy number variable (CNV) region at 3q26.1 was shown to have copy number loss in all eight polyps compared to matched lymphocytes of two affected members. A common region of loss in all polyps, which are precursors to CRC, is likely to harbor disease-causing gene in accordance to Knudsen's "two-hit" hypothesis. There is, however, no gene within the deleted region. A 2-Mb scan of the genomic region encompassing the deleted region identified PPM1L, coding for a novel serine-threonine phosphatase in the TGF-, and BMP signaling pathways. Real-time PCR analyses indicate that the 3,UTR of PPM1L transcript was down-regulated more than two-folds in all six polyps and tumors compared to matched mucosa of the affected member. This down-regulation was not observed in APC mutation-positive FAP patients. Our results suggest that the CNV region at 3q26 harbors an element that regulates the expression of an upstream candidate tumor suppressor, PPM1L, thus providing a novel mechanism for colorectal tumorigenesis in APC mutation-negative familial CRC patients. © 2009 Wiley-Liss, Inc. [source] Genetic and epigenetic alterations in the differential diagnosis of malignant melanoma and spitzoid lesionBRITISH JOURNAL OF DERMATOLOGY, Issue 6 2007M. Takata Summary Background, The histopathological differentiation of malignant melanoma and Spitz naevus often presents diagnostic problems. Objectives, We aimed to find out applicable diagnostic parameters other than routine pathology. Methods, The cases included conventional melanomas and Spitz naevi as well as atypical spitzoid lesions that had posed diagnostic difficulties. We examined hotspots of mutation in the BRAF, NRAS and HRAS genes by polymerase chain reaction-based direct sequencing. We also analysed DNA copy number aberrations and the methylation of CpG sequences in several cancer-related genes by utilizing a novel methylation-specific multiplex ligation-dependent probe amplification method. Results, Twenty three of 24 conventional melanomas showed at least one of the genetic and epigenetic alterations examined, although one acral melanoma did not show any alteration. By sharp contrast, 12 Spitz naevi with an unambiguous histopathology showed no or few chromosomal aberrations, no oncogene mutations and no methylation of CpG sequences. Of the 16 ambiguous spitzoid lesions, most of which were designated atypical Spitz tumour by one of the authors, all but one showed no mutations, no methylations and few copy number aberrations. However, three tumours showed copy number loss of the cyclin-dependent kinase inhibitor 2A gene (CDKN2A), an alteration observed frequently in melanomas but not found in conventional Spitz naevi. These results show that, although most atypical Spitz tumours do not differ from conventional Spitz naevi showing virtually no genetic and epigenetic aberrations, some cases may have chromosomal aberrations that include copy number loss of the CDKN2A gene. Conclusions, Genetic and epigenetic analyses may be useful as an additional diagnostic tool to distinguish between melanoma and Spitz naevus, and may help to define subgroups in atypical Spitz tumours. [source] Recurrent copy number gain of transcription factor SOX2 and corresponding high protein expression in oral squamous cell carcinomaGENES, CHROMOSOMES AND CANCER, Issue 1 2010Kolja Freier Gene copy number aberrations are involved in oral squamous cell carcinoma (OSCC) development. To delineate candidate genes inside critical chromosomal regions, array-CGH was applied to 40 OSCC specimens using a microarray covering the whole human genome with an average resolution of 1 Mb. Gene copy number gains were predominantly found at 1q23 (9 cases), 3q26 (11), 5p15 (13), 7p11 (7), 8q24 (17), 11q13 (15), 14q32 (8), 19p13 (8), 19q12 (7), 19q13 (8), and 20q13 (9), whereas gene copy number losses were detected at 3p21-3p12 (15), 8p32 (11), 10p12 (8), and 18q21-q23 (10). Subsequent mRNA expression analyses by quantitative real time polymerase chain reaction found high mRNA expression of candidate genes SOX2 in 3q26.33, FSLT3 in 19p13.3, and CCNE1 in 19q12. Tissue microarray (TMA) analyses in a representative OSCC collection found gene copy number gain for SOX2 in 52% (115/223) and for CCNE1 in 31% (72/233) of the tumors. Immunohistochemical analyses on TMA sections of the corresponding proteins detected high expression of SOX2 in 18.1% (49/271) and of CyclinE1 in 23.3% (64/275) of tumors analyzed. These findings indicate that SOX2 and CCNE1 might be activated via gene copy number gain and participate in oral carcinogenesis. The combination of array-CGH with TMA analyses allows rapid pinpointing of novel promising candidate genes, which might be used as therapeutic stratification markers or target molecules for therapeutic interference. © 2009 Wiley-Liss, Inc. [source] Quantitative microsatellite analysis to delineate the commonly deleted region 1p22.3 in mantle cell lymphomasGENES, CHROMOSOMES AND CANCER, Issue 10 2006Asha Balakrishnan The molecular pathogenesis of mantle cell lymphomas (MCL), a subset of B-cell non-Hodgkin's lymphomas with a poor prognosis, is still poorly understood. In addition to the characteristic primary genetic alteration t(11;14)(q13;q32), several further genetic changes are present in most cases. One of the most frequent genomic imbalances is the deletion of 1p22.1,p31.1 observed in nearly one-third of MCL cases. This might indicate the presence of tumor suppressor gene(s) in this critical region of deletion. Quantitative microsatellite analysis (QuMA) is a real-time PCR-based method to detect DNA copy number changes. Since QuMA has the resolving power to detect subtle genomic alterations, including homozygous deletions, this may help to identify candidate tumor suppressor genes from deleted regions. To gain more insight into the molecular pathogenesis of MCL, QuMA was performed on genomic DNA from 57 MCL cases. Eight microsatellite loci mapping to the chromosomal region 1p22.3 were analyzed. Losses were observed in 51 of the 57 (,89.5%) samples. Two cases showed a homozygous deletion at the locus containing the gene SH3GLB1, which plays a key role in Bax-mediated apoptosis. Two hotspots with copy number losses were detected at chromosomal localizations 85.4 and 86.6 Mb encompassing BCL10 and CLCA2. Both the genes seem to be attractive candidates to study tumor suppressor function in MCL. This article contains Supplementary material available at http://www.interscience.wiley.com/jpages/1045,2257/suppmat. © 2006 Wiley-Liss, Inc. [source] Copy number gains in EGFR and copy number losses in PTEN are common events in osteosarcoma tumors,CANCER, Issue 6 2008Serena S. Freeman Abstract BACKGROUND. Osteosarcoma cell lines and tumors have been shown to express epidermal growth factor receptor (EGFR) and harbor amplifications at the EGFR locus. In this study, the authors further analyzed the genomic features of EGFR in osteosarcoma tumors and investigated whether they correlate with phosphatase and tensin homolog (PTEN) expression and copy number status. METHODS. EGFR and PTEN expression was assessed by immunohistochemistry (n = 28), and copy number alterations at the EGFR and PTEN loci were surveyed using Affymetrix (Santa Clara, Calif) 50K single nucleotide polymorphism (SNP) arrays (n = 31) and fluorescence in situ hybridization (FISH) (n = 27). The EGFR tyrosine kinase domain was sequenced to survey for activating mutations (n = 34). In addition, EGFRvIII expression was assessed using reverse transcriptase polymerase chain reaction (n = 24). Results were correlated with available clinical information on 59 patients, with a median age of 14.1 years (range, 5-23years) and median follow-up of 4.4 years. RESULTS. EGFR expression was detected in the majority of osteosarcoma tumors surveyed (23 of 28; 82%). SNP arrays revealed evidence of frequent copy number gains at 7p11.2 and losses at 10q23.21. A sizeable subset (16 of 27 cases; 59%) showed gains at the EGFR locus using FISH (amplification in 4 of 27 [15%] and balanced chromosome 7 polysomy in 12 of 27 [44%]), and 12 cases showed deletions at the PTEN locus (biallelic deletions in 4 of 27 [15%] and monoallelic deletion in 9 of 27 [33%]). No activating mutations in the EGFR tyrosine kinase domain, EGFRvIII expression, or association with clinical findings were detected. CONCLUSIONS. EGFR expression and genomic gains at the EGFR locus are prevalent in osteosarcoma tumors, which also commonly harbor deletions at the PTEN locus. Cancer 2008. © 2008 American Cancer Society. [source] |