Copper Films (copper + film)

Distribution by Scientific Domains


Selected Abstracts


Fabrication of Nanoporous Copper Film for Electrochemical Detection of Glucose

ELECTROANALYSIS, Issue 21 2009
Sirilak Sattayasamitsathit
Abstract A nanoporous copper film was fabricated on a copper wire by electrodeposition of copper/zinc alloy and chemically etching of zinc. The surface morphology was investigated by SEM. When applied to detect glucose in an amperometric flow injection system the porous copper electrode provided 12 times higher sensitivity than solid copper. It could be continuously used up to 50 times (%RSD=5.7). Different preparations of the porous film provided reproducible responses (P<0.05). Detection of glucose in E. coli cultivation medium compared well with spectrophotometric technique (P<0.05). This simple technique can produce a nanoporous electrode with good performances and can easily be applied to other metals and analytes. [source]


A Study on the Metal Organic CVD of Pure Copper Films from Low Cost Copper(II) Dialkylamino-2-propoxides: Tuning the Thermal Properties of the Precursor by Small Variations of the Ligand,

CHEMICAL VAPOR DEPOSITION, Issue 3 2003
R. Becker
Abstract Pure copper metal thin films were grown on SiO2/Si(100) substrates by metal,organic (MO) CVD in a horizontal cold-wall reactor employing the two metal,organic compounds, Cu(OCHMeCH2NR2)2, where R,=,Et (1) and R,=,Me (2) as precursors. Thermogravimetric analyses proved them to be convenient compounds for the deposition of copper without a reducing agent. Depositions were carried out at various substrate temperatures in the range 230,350,°C. X-ray diffraction (XRD) indicated that the resulting films were highly crystalline and showed a strong (111) preferred orientation, which increased with increasing deposition temperature. Photoelectron spectroscopy (XPS) revealed that copper films deposited at 230,°C and 260,°C consisted solely of metallic copper with no detectable carbon, nitrogen, or oxygen contamination. Copper films obtained from 1 at 260,°C had a resistivity of 2.16,,,,cm. [source]


Fabrication of Nanoporous Copper Film for Electrochemical Detection of Glucose

ELECTROANALYSIS, Issue 21 2009
Sirilak Sattayasamitsathit
Abstract A nanoporous copper film was fabricated on a copper wire by electrodeposition of copper/zinc alloy and chemically etching of zinc. The surface morphology was investigated by SEM. When applied to detect glucose in an amperometric flow injection system the porous copper electrode provided 12 times higher sensitivity than solid copper. It could be continuously used up to 50 times (%RSD=5.7). Different preparations of the porous film provided reproducible responses (P<0.05). Detection of glucose in E. coli cultivation medium compared well with spectrophotometric technique (P<0.05). This simple technique can produce a nanoporous electrode with good performances and can easily be applied to other metals and analytes. [source]


Conductive thin film formation onto radiation grafted polymeric surfaces using electroless plating technique

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 9 2009
Amr El-Hag Ali
Abstract Surface modification of polypropylene films (PP) was carried out via radiation induced graft copolymerization of 4-vinyl pyridine (4VP) and acrylamide (AAm) to enhance the adhesion ability of the PP surface for electroless deposition of copper. Factors affecting the grafting process such as suitable solvent, comonomer composition and concentration and irradiation dose were optimized. The grafted films produced were characterized by studying their Fourier-transform infrared (FTIR) spectra and thermal stability. The grafted films were copper-plated by electroless deposition using Pd as the catalyst to initiate the redox reaction. The influence of catalytic activation method parameters on the plating rate were studied. Scanning electron microscopy revealed a dense and void-free copper deposited film. The adhesion of the deposited copper film to the modified PP films was determined by measuring the tensile strength of the copper plated films. The electrical characteristics of the copper plated films in comparison with grafted films were studied. The results showed the high adhesion of the deposited copper film to the grafted PP film as well as the high electrical conductivity. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Optical, structural, and electrical properties of Cu2O thin films

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 7 2010
Ferid Chaffar Akkari
Abstract Glancing-angle deposition (GLAD) was used in this work to grow transparent oxide Cu2O thin films by annealing in air at 185,°C of copper films deposited firstly by this method onto glass substrates. The annealing temperature of 185,°C corresponds to the optimal temperature that corresponds to the formation of Cu2O phase. The copper was sculptured into a zigzag shape, which present case (i) one column with inclined angle ,, case (ii) two columns with inclined angles , and ,,, and case (iii) three copper inclined columns with inclined angles ,, ,,, and , where , is the deposition angle between the incident flux and the substrate surface normal. The films after annealing have thicknesses of 165, 185, and 265,nm for cases (i), (ii), and (iii), respectively. The air-annealed copper films were characterized for their structural, surface morphological; electrical and optical properties by using X-ray diffraction (XRD), scanning electron microscopy (SEM), electrical resistivity, and optical (transmittance and reflectance) measurement techniques. Optical studies show a direct allowed transition around 2.5,eV for the three cases. High absorptions coefficients in the range 2,×,105,3.7,×,106,cm,1 were found for photon energies higher than 2.7,eV. The Cu2O films exhibit in cases (i) and (ii) p-type conductivity but in case (iii) the Cu2O films exhibit n-type conductivity. [source]


Quantitative microstructure characterization of self-annealed copper films with electron backscatter diffraction

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 2 2008
Karen Pantleon
Abstract Electron backscatter diffraction (EBSD) was applied to analyze cross sections of self-annealed copper electrodeposits, for which earlier the kinetics of self-annealing had been investigated by in-situ X-ray diffraction (XRD). The EBSD investigations on the grain size, grain boundary character and crystallographic texture of copper films with different thicknesses essentially supplement results from in-situ XRD. Twin relations between neighboring grains were identified from the orientation maps and the observed twin chains confirm multiple twinning in copper electrodeposits as the mechanism of microstructure evolution at room temperature (self-annealing). (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Deposition of crystalline copper films from tetranuclear copper (II) complexes without application of reducing atmosphere

APPLIED ORGANOMETALLIC CHEMISTRY, Issue 10 2010
Muhammad Shahid
Abstract Crystalline copper films were deposited by aerosol-assisted chemical vapor deposition (AACVD) in the absence of hydrogen from two newly synthesized complexes [Cu(deae)(TFA)]4·1.25THF (1) and [Cu4(OAc)6(bdmap)2(H2O)2]·4H2O (2) [deae = N, N -diethylaminoethanolate, TFA = trifloroacetate, OAc = acetate and bdmap = 1,3-bis(dimethylamino)-2-propanolato]. These precursors were prepared in high yield using mixed ligands and crystallized in tetragonal and triclinic crystal systems with space groups 141/a and P , 1. Complexes 1 and 2 thermally decomposed at 290 and 250 °C, respectively, to yield copper films which were characterized by SEM/EDX for their morphology and composition and PXRD for their crystallinity and phase. These films have smooth morphologies with particle sizes within the range of 0.3,0.6 µm and may find applications in fabrication of ultralarge-scale integrated circuits. Copyright © 2010 John Wiley & Sons, Ltd. [source]


A Study on the Metal Organic CVD of Pure Copper Films from Low Cost Copper(II) Dialkylamino-2-propoxides: Tuning the Thermal Properties of the Precursor by Small Variations of the Ligand,

CHEMICAL VAPOR DEPOSITION, Issue 3 2003
R. Becker
Abstract Pure copper metal thin films were grown on SiO2/Si(100) substrates by metal,organic (MO) CVD in a horizontal cold-wall reactor employing the two metal,organic compounds, Cu(OCHMeCH2NR2)2, where R,=,Et (1) and R,=,Me (2) as precursors. Thermogravimetric analyses proved them to be convenient compounds for the deposition of copper without a reducing agent. Depositions were carried out at various substrate temperatures in the range 230,350,°C. X-ray diffraction (XRD) indicated that the resulting films were highly crystalline and showed a strong (111) preferred orientation, which increased with increasing deposition temperature. Photoelectron spectroscopy (XPS) revealed that copper films deposited at 230,°C and 260,°C consisted solely of metallic copper with no detectable carbon, nitrogen, or oxygen contamination. Copper films obtained from 1 at 260,°C had a resistivity of 2.16,,,,cm. [source]