Copolymer Hydrogel (copolymer + hydrogel)

Distribution by Scientific Domains


Selected Abstracts


Properties of a poly(acrylamide- co -diallyl dimethyl ammonium chloride) hydrogel synthesized in a water,ionic liquid binary system

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2010
Qian Zhao
Abstract A novel copolymer hydrogel, poly(acrylamide- co -diallyl dimethyl ammonium chloride), was prepared by the radical copolymerization of acrylamide and diallyl dimethyl ammonium chloride in an ionic liquid (IL),water binary system in the presence of the crosslinker N,N,-methylene bisacrylamide. The equilibrium swelling ratios of the hydrogels synthesized in the IL,water binary system increased with the content of IL and were remarkably higher than that of the gel synthesized in water. Differential scanning calorimetry measurements showed that the glass-transition temperatures of the dry hydrogels that were synthesized in the IL,water binary system were remarkably lower than that of the gel synthesized in pure water. The mechanical properties of the gels synthesized in both water and the IL,water binary system were characterized with a universal material-testing machine. The results show that fracture toughness of the hydrogels was improved when they were synthesized in the IL,water binary system. The gel shrank under a direct-current electric field. The response rates of the gels that were synthesized with the IL,water binary system were faster than that of the gel synthesized in water. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


Preparation and characterization of infection-resistant antibiotics-releasing hydrogels rods of poly[hydroxyethyl methacrylate- co -(poly(ethylene glycol)-methacrylate]: Biomedical application in a novel rabbit penile prosthesis model

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2008
M. Yakup Ar
Abstract In this work, preparation and characterization of novel three different antibiotic loaded penile prosthesis in the rod form were investigated by copolymerization of 2-hydroxyethylmethacrylate (HEMA) with poly(ethylene glycol)-methacrylate, (PEG-MA). To achieve this goal, a series of novel copolymer hydrogels were prepared in rod form using HEMA and PEG-MA monomers via UV initiated photopolymerization. The thermal stability of the copolymer was found to be lowered by increase in the ratio of PEG-MA in the rod structure. Contact angle measurements on the surface of copolymer hydrogel demonstrated that the copolymer gave rise to a significant hydrophilic surface compared with pure poly(HEMA). The blood protein adsorption and platelet adhesion were significantly reduced on the surface of the copolymer hydrogels compared with control pure poly(HEMA). Poly(HEMA:PEG-MA;1:1)-1 formulation containing different antibiotics (20 mg antibiotic/g polymer) released about 90, 91, and 55% of the total loaded cephtriaxon, vancomycin, and gentamicin in 48 h at pH 7.4, respectively. Finally, antibiotics loaded biocompatible poly(HEMA:PEG-MA;1:1)-1 hydrogel compositions was used as a penile prosthesis in preventing cavernous tissue infections in a rabbit prosthesis model. The efficacy of the three different antibiotics loaded hydrogel system was evaluated in four different groups of rabbits, in which various infectious agents were inoculated. The animals were sacrificed after predetermined time periods, and clinical, histological and microbiological assessment on the implant side were carried out to detect infections. Eventually, we concluded that three different antibiotic loaded penile prostheses (i.e. poly(HEMA:PEG-MA;1:1)-1 hydrogel systems) were as effective as parenteral antibiotics applications. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2008 [source]


Poly(acrylamide- co -itaconic acid) and Semi-IPNS with Poly(ethylene glycol): Preparation and Characterization

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 16 2004
Melina Kalagasidis Kru
Abstract Summary: A pH-responsive poly(acrylamide- co -itaconic acid) (PAAm/IA) hydrogel and semi-interpenetrating networks (semi-IPNs) with 5, 10 and 15 wt.-% of poly(ethylene glycol) (PAAm/IA/PEG), were synthesized. Their swelling behavior was studied in the pH range from 1.76 to 7.81, as well as their oscillatory swelling behavior at pH,=,7.81 and pH,=,1.7. Throughout these studies, the gels maintained their mechanical strengths and shape. The shear storage (G,) and loss (G,) moduli, obtained as a function of frequency, for the gels as formed and at equilibrium swelling were higher for the semi-IPNs than for the copolymer hydrogel. The shear storage moduli of copolymer hydrogel and semi-IPNs as formed were independent of frequency over the whole experimental range, whereas the values for the gels at equilibrium swelling decreased with increasing degree of swelling, i.e., the PAAm/IA hydrogel which exhibited the largest swelling had the lowest G, value. The G, and G, values also depended on the content of PEG. Diffusion exponent vs. pH for PAAm, copolymer hydrogel PAAm/IA and semi-IPN with PEG. [source]


Preparation and characterization of infection-resistant antibiotics-releasing hydrogels rods of poly[hydroxyethyl methacrylate- co -(poly(ethylene glycol)-methacrylate]: Biomedical application in a novel rabbit penile prosthesis model

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2008
M. Yakup Ar
Abstract In this work, preparation and characterization of novel three different antibiotic loaded penile prosthesis in the rod form were investigated by copolymerization of 2-hydroxyethylmethacrylate (HEMA) with poly(ethylene glycol)-methacrylate, (PEG-MA). To achieve this goal, a series of novel copolymer hydrogels were prepared in rod form using HEMA and PEG-MA monomers via UV initiated photopolymerization. The thermal stability of the copolymer was found to be lowered by increase in the ratio of PEG-MA in the rod structure. Contact angle measurements on the surface of copolymer hydrogel demonstrated that the copolymer gave rise to a significant hydrophilic surface compared with pure poly(HEMA). The blood protein adsorption and platelet adhesion were significantly reduced on the surface of the copolymer hydrogels compared with control pure poly(HEMA). Poly(HEMA:PEG-MA;1:1)-1 formulation containing different antibiotics (20 mg antibiotic/g polymer) released about 90, 91, and 55% of the total loaded cephtriaxon, vancomycin, and gentamicin in 48 h at pH 7.4, respectively. Finally, antibiotics loaded biocompatible poly(HEMA:PEG-MA;1:1)-1 hydrogel compositions was used as a penile prosthesis in preventing cavernous tissue infections in a rabbit prosthesis model. The efficacy of the three different antibiotics loaded hydrogel system was evaluated in four different groups of rabbits, in which various infectious agents were inoculated. The animals were sacrificed after predetermined time periods, and clinical, histological and microbiological assessment on the implant side were carried out to detect infections. Eventually, we concluded that three different antibiotic loaded penile prostheses (i.e. poly(HEMA:PEG-MA;1:1)-1 hydrogel systems) were as effective as parenteral antibiotics applications. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2008 [source]