Coordination Environment (coordination + environment)

Distribution by Scientific Domains
Distribution within Chemistry

Kinds of Coordination Environment

  • different coordination environment
  • octahedral coordination environment


  • Selected Abstracts


    Coordination Environment of Aqueous Uranyl(VI) Ion.

    CHEMINFORM, Issue 50 2005
    Michael Buehl
    Abstract For Abstract see ChemInform Abstract in Full Text. [source]


    Resource management in open Linda systems

    CONCURRENCY AND COMPUTATION: PRACTICE & EXPERIENCE, Issue 13 2003
    Ronaldo Menezes
    Abstract Coordination systems, in particular Linda, have established themselves as important tools for the development of applications to open systems such as the Internet. This paper shows how to tackle a forgotten, but crucial problem in open coordination systems: memory management. As with any system which intends to be of wide use and because memory is a finite resource, coordination systems must address the problems of memory exhaustion. This paper first explores the orthogonality between coordination and computation in order to make it clear that the problem of memory exhaustion in coordination systems cannot be solved using garbage collection schemes implemented at the computation language,a garbage collection scheme must exist in the coordination environment as well. Following the explanation on orthogonality, the paper will focus on describing a garbage collection scheme for the Linda family of coordination systems. It is expected that the solution in Linda can be adapted to other coordination systems as long as they are based on tuple space communication. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Association of europium(III), americium(III), and curium(III) with cellulose, chitin, and chitosan

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2006
    Takuo Ozaki
    Abstract The association of trivalent f-elements,Eu(III), Am(III), and Cm(III),with cellulose, chitin, and chitosan was determined by batch experiments and time-resolved, laser-induced fluorescence spectroscopy (TRLFS). The properties of these biopolymers as an adsorbent were characterized based on speciation calculation of Eu(III). The adsorption study showed that an increase of the ionic strength by NaCl did not affect the adsorption kinetics of Eu(III), Am(III), and Cm(III) for all the biopolymers, but the addition of Na2CO3 significantly delayed the kinetics because of their trivalent f-element complexation with carbonate ions. It also was suggested from the speciation calculation study that all the biopolymers were degraded under alkaline conditions, leading to their masking of the adsorption of Eu(III), Am(III), and Cm(III) on the nondegraded biopolymers. The masking effect was higher for cellulose than for chitin and chitosan, indicating that of the three, cellulose was degraded most significantly in alkaline solutions. Desorption experiments suggested that some portion of the adsorbed Eu(III) penetrated deep into the matrix, being isolated in a cavity-like site. The TRLFS study showed that the coordination environment of Eu(III) is stabilized mainly by the inner spherical coordination in chitin and by the outer spherical coordination in chitosan, with less association in cellulose in comparison to chitin and chitosan. These results suggest that the association of these biopolymers with Eu(III), Am(III), and Cm(III) is governed not only by the affinity of the functional groups alone but also by other factors, such as the macromolecular steric effect. The association of degraded materials of the biopolymers also should be taken into consideration for an accurate prediction of the influence of biopolymers on the migration behavior of trivalent f-elements. [source]


    Self-Assembled Lanthanide Salicylaldimines with a Unique Coordination Mode

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 14 2010
    gorzata T. Kaczmarek
    Abstract New lanthanide salicylaldimine complexes of the formula [Ln(H2L)3(NO3)3](H2L), where Ln = La3+ (1), Nd3+ (2), Eu3+ (3), Gd3+ (4), Ho3+ (5), Er3+ (6), Tb3+ (7) or Yb3+ (8), and H2L = N,N,-bis(salicylidene)-4-methyl-1,3-phenylenediamine, were formed in a self-assembly process involving the lanthanide template-induced one-step [2+1] Schiff base condensation reaction between salicylaldehyde and 4-methyl-1,3-phenylenediamine. The unusual coordination pattern of salen-type ligands in these complexes, in which the three potentially tetradentate N2O2 salicylaldimines function as undeprotonated, monodentate, exclusively O-donor ligands without involving the nitrogen atoms in the coordination environment, was proved by single-crystal X-ray diffraction analysis and correlated with spectroscopic characterization. In this species with the nine-coordinate distorted tricapped trigonal prism geometry, the nitrates act as bidentate chelators occupying six coordination sites and leaving the remaining sites available for salicylaldimine ligands formed in situ in the template process. The additional salicylaldimine molecule acts as a guest for the salicylaldimine complex host and stabilizes the overall self-assembled supramolecular network. [source]


    Divanadium(V) and Trapped Valence Linear Tetravanadium(IV,V,V,IV) Complexes

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 35 2009
    Anindita Sarkar
    Abstract In an acetonitrile/water mixture, reactions of the N,N,-bis(diacetyl)hydrazine (H2diah), bis(acetylacetonato)oxidovanadium(IV) [VO(acac)2] and monodentate N -coordinating heterocycles (hc) in a 1:2:2 mol ratio provide yellow divanadium(V) complexes of formula [(hc)O2V(,-diah)VO2(hc)] (1, hc = imidazole; 2, hc = pyrazole; 3, hc = 3,5-dimethyl pyrazole). On the other hand, in the same solvent mixture reactions of the same reagents in a 1:4:2 mol ratio produce green linear tetravanadium(IV,V,V,IV) complexes of formula [(acac)2OV(,-O)VO(hc)(,-diah)(hc)OV(,-O)VO(acac)2] (4, hc = imidazole; 5, hc = pyrazole; 6, hc = 3,5-dimethyl pyrazole). The complexes 1,6 have been characterized by elemental analysis, magnetic susceptibility, and various spectroscopic and electrochemical measurements. The X-ray crystal structures of 1, 3 and 6 have been determined. In all three structures, the diazine ligand diah2, is in trans configuration. Metal-centred bond parameters are consistent with the localized electronic structure of the two trans -bent {OV(,-O)VO}3+ cores present in 6. The pentavalent metal centres in 1, 3 and 6 are in a distorted trigonal-bipyramidal N2O3 coordination environment, while the terminal tetravalent metal centres in 6 are in a distorted octahedral O6 coordination sphere. The eight-line EPR spectra of the tetravanadium species (4,6) in dimethyl sulfoxide at ambient temperature indicate the rare valence localized electronic structure in the fluid phase. All the complexes are redox active and display metal-centred electron transfer processes in dimethyl sulfoxide solution. A reduction within ,0.78 to ,0.94 V (vs. Ag/AgCl) is observed for the divanadium(V) species 1,3, while a reduction and an oxidation are observed in the potential ranges ,0.82 to ,0.90 V and 0.96 to 1.12 V (vs. Ag/AgCl), respectively, for the tetravanadium species 4,6. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


    Metal Complexes of 4,11-Dimethyl-1,4,8,11-tetraazacyclotetradecane-1,8-bis(methylphosphonic acid) , Thermodynamic and Formation/Decomplexation Kinetic Studies

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 24 2009
    Ivona Svobodová
    Abstract The macrocyclic ligand with two methylphosphonic acid pendant arms, 4,11-dimethyl-1,4,8,11-tetraazacyclotetradecane-1,8-bis(methylphosphonic acid) (1,8-H4Me2te2p, H4L3), was synthesized by a new simple approach. The product of the reaction of quarternized formaldehyde cyclam aminal with the sodium salt of diethyl phosphite was hydrolyzed to give a very high yield of the title ligand. The (H6L3)2+ cation in the solid state is protonated on all ring nitrogen atoms and on each phosphonate group. In the solid-state structure of [Cu(H3L3)][Cu(H2L3)]PF6·3H2O, neutral as well as positively charged complex species are present. Molecular structures of both species are very similar having the copper(II) ion in a coordination environment between square-pyramidal and trigonal-bipyramidal arrangements (, = 0.43 and 0.48) with one pendant arm non-coordinated. The ligand forms stable complexes with transition-metal ions showing a high selectivity for divalent copper atoms. The formation of complexes of the ligand with CuII, ZnII and CdII is fast, confirming the acceleration of complexation due to the presence of the strongly coordinating pendant arms. Acid-assisted decomplexation is fast for all three metal ions. Therefore, the copper(II) complex is not suitable for medicinal applications employing copper radioisotopes, but the title ligand motive can be employed in copper(II) separation. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


    One-Dimensional Coordination Polymers of MnII, CuII, and ZnII Supported by Carboxylate-Appended (2-Pyridyl)alkylamine Ligands , Structure and Magnetism

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 22 2009
    Himanshu Arora
    Abstract Four new complexes [MnII(L1OO)(H2O)][ClO4]·2H2O (1), [ZnII(L1OO)][ClO4]·2H2O (2), [CuII(L3OO)][CF3SO3]·H2O (3), and [ZnII(L3OO)][ClO4] (4) (L1OO, = 3-[(2-(pyridine-2-yl)ethyl){2-(pyridine-2-yl)methyl}amino]propionate; L3OO, = 3-[(2-(pyridine-2-yl)ethyl){(dimethylamino)ethyl}amino]propionate) have been synthesized and characterized by elemental analysis, IR, and UV/Vis spectroscopy. Structural analysis revealed that 1, 3, and 4 are one-dimensional chain-like coordination polymers. In 1 distorted octahedral MnN3O3 and in 3 square-pyramidal CuN3O2 coordination is satisfied by three nitrogen atoms and an appended carboxylate oxygen atom of the ligand, and an oxygen atom belonging to the carboxylate group of an adjacent molecule. In 4 trigonal bipyramidal ZnN3O2 coordination environment is provided by two nitrogen atoms and an appended carboxylate oxygen atom of the ligand in the equatorial plane, and the two axial positions are satisfied by a tertiary amine nitrogen and an oxygen atom belonging to the carboxylate group of an adjacent molecule. In 1 the MnII center is coordinated by an additional water molecule. In these complexes each monomeric unit is sequentially connected by syn - anti carboxylate bridges. Temperature-dependent magnetic susceptibilities for 1 and 3 are measured, revealing antiferromagnetic interactions through syn - anti carboxylate bridges between the MII centers. Analysis of the crystal packing diagram reveals that in 1 extensive ,,, stacking involving alternate pyridine rings of adjacent 1D chain exists, which eventually lead to the formation of a 2D network structure. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


    Synthesis, Structure and Magnetic Properties of a Tetranuclear Copper(II) Complex on the Basis of a 2-Substituted Glucopyranoside Schiff Base Ligand,

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 17 2006
    Anja Burkhardt
    Abstract Condensation of a derivatized 2-aminoglucose fragment with salicylaldehyde affords the new sugar-based Schiff base ligand benzyl 4,6- O -benzylidene-2-deoxy-2-salicylideneamino-,- D -glucopyranoside (H2L). The reaction of the dibasic ligand H2L with [Cu(CH3COO)2]·H2O leads to the formation of the tetranuclear copper(II) complex [{Cu(L)}4] (3) by a self-assembly process. The X-ray structural analysis of complex 3 which crystallizes together with two molecules of chloroform and one molecule of ethanol in the space group P212121 revealed for all copper atoms a NO3 coordination environment with a square-planar geometry. The tetranuclear molecule 3 consists of four chiral building blocks {Cu(L)} with the rare 2,3-coordination of the trans -configured donor atoms of the sugar backbone. The observed coordination mode of the building blocks exemplifies how chitosan-derived polysaccharide ligands can act as a chiral support for transition-metal complexes. The C-3 alcoholate oxygen atoms of the carbohydrate unit is bridging adjacent {Cu(L)} moieties resulting in an eight-membered Cu4O4 ring with a boat-like conformation. Temperature-dependent magnetic measurements of 3 indicate moderate antiferromagnetic interactions between the four copper(II) ions with a coupling constant of J = ,130 cm,1.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source]


    Structure, Characterization, and Metal-Complexation Properties of a New Tetraazamacrocycle Containing Two Phenolic Pendant Arms

    HELVETICA CHIMICA ACTA, Issue 10 2004
    Xiuling Cui
    The new tetraazamacrocycle 2 (=2,2,-[[7-Methyl-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene-3,11-diyl]bis(methylene)]bis(4-bromophenol)) was synthesized and used as a ligand for different metal-ion complexes. The X-ray crystal structures of the complexes of the general formula [M(H- 2)]+NO,MeOH (M=Ni2+, Zn2+), in which only one of the two pendant phenolic OH groups of 2 is deprotonated, were determined. In both complexes, the coordination environment is of the [5+1] type, the four N-atoms of the macrocyclic framework defining a square-planar arrangement around the metal center, with similar NiN and ZnN distances of 1.961(9) to 2.157(9),Å and 2.021(9) to 2.284(8),Å, respectively. In contrast, the MO distances are markedly different, 2.060(6) and 2.449(8),Å in the NiII complex, and 2.027(7) and 2.941(9),Å in the ZnII complex. The UV/VIS spectra of the NiII and CuII complexes with ligand 2, and the EPR spectra of the CuII system, suggest the same type of structure for the complexes in solution as in the solid state. Theoretical studies by means of density functional theory (DFT) confirmed the experimental structures of the NiII and ZnII complexes, and led to a proposal of a similar structure for the corresponding CuII complex. The calculated EPR parameters for the latter and comparison with related data support this interpretation. The singly occupied molecular orbital (SOMO) in these systems is mainly made of a d orbital of Cu, with a strong antibonding (,*) contribution of the axially bound phenolate residue. [source]


    Ruthenium ONO-Type Pincer Complex: Synthesis, Structural Characterization, and Catalysis

    ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 10 2010
    Yao Zhang
    Abstract A novel nitrone-based pincer ligand was developed by a single-step synthesis from N -(tert -butyl)hydroxylamine acetate and 2,6-pyridinedicarboxaldehyde. The developed ligand allowed us to synthesize a cationic ruthenium pincer complex. A distorted octahedral coordination environment around the ruthenium center was observed. The complex showed excellent catalytic activity in transfer hydrogenation reactions with turnover numbers up to 590,000. [source]


    Microparticles of poly(methacrylic acid),gadolinium ion complex and their magnetic force microscopic images

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 8 2004
    Tsuyoshi Michinobu
    Abstract Modified poly(methacrylic acid) microparticles complexed with gadolinium(III) (Gd3+) ions were prepared in 100 nm. The emulsion terpolymerization of methacrylic acid, ethyl acrylate, and allyl methacrylate and the following complexation with Gd3+ ions yielded the polymer particles with different Gd3+ ion contents. Potentiometric titration of the complexation of the particle with Gd3+ ions indicated the formation of a very stable tris-carboxylate coordinate complex with the Gd3+ ion. Electron spin resonance and IR spectra of the complexed particles were dependent on the Gd3+ ion content and the coordination environment in each particle. The microparticles dispersed on a mica substrate were subjected to atomic force microscopy (AFM), followed by magnetic force microscopy (MFM). AFM showed 100-nm-sized and monodispersed spherical images. The following MFM clearly provided strong magnetic responses exactly on the same particle positions, of which the images were also dependent on the Gd3+ ion content in the particle. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1912,1918, 2004 [source]


    Vibrational spectroscopic and force field studies of copper(II) chloride and bromide compounds, and crystal structure of KCuBr3

    JOURNAL OF RAMAN SPECTROSCOPY, Issue 1 2008
    Liubov V. Stepakova
    Abstract Vibrational spectroscopic and force field studies have been performed of 15 related copper(II) chloride and copper(II) bromide compounds, including hydrated salts crystallizing in ternary aqueous systems with alkali and ammonium halides. For halocuprates with distorted octahedral coordination characteristic stretching Raman wavenumbers, corresponding to symmetric stretching CuIIX modes in the equatorial plane, were found in the ranges 247,288 cm,1 for X = Cl, and 173,189 cm,1 for X = Br, while the low-wavenumber stretching modes for the weaker axial CuX interactions varied considerably. The tetrahedral coordination for Cs2CuCl4 and Cs2CuBr4 leads to somewhat lower CuX symmetric stretching wavenumbers, 295 and 173 cm,1, respectively. The assignments of the copper,ligand stretching vibrations were performed with the aid of normal coordinate calculations. Correlations between force constants, averaged CuX stretching wavenumbers and bond distances have been evaluated considering the following aspects: (1) Jahn,Teller tetragonal distortion (axial elongation) of the octahedral copper(II) coordination environment, (2) differences between terminal and bridging halide ligands (3) effects of coordinated water and the influence of outer-sphere cations. Force constant ratios for terminal and bridging metal,halide bonds reveal characteristic differences between planar and tetrahedrally coordinated M2X6 species. In the hydrated copper(II) halide complexes, the halide ligands are more strongly bound than coordinated water molecules. The crystal structure of KCuBr3 (K2Cu2Br6), which was determined to provide structural information for the force field analyses, contains stacks of planar dimeric [Cu2Br6]2, complexes held together by weak axial CuBr interactions. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Structure determination and phase transition behaviour of dimethyl sulfate

    ACTA CRYSTALLOGRAPHICA SECTION B, Issue 2 2006
    Mark T. F. Telling
    The crystal structures of phase I and phase II of dimethyl sulfate, (CH3O)2SO2, have been determined using complementary high-resolution neutron powder and single-crystal X-ray diffraction techniques. Below its melting point of 241,K dimethyl sulfate crystallizes in an orthorhombic structure (I) in the space group Fdd2. On cooling below ,175,K the crystal transforms to a monoclinic structure (II) in the space group I2/a. The molecule is located on a twofold axis (Z, = 1/2) in both structures. The phase transition is of first order with strong hysteresis. The phase transition results in changes to both the intra- and the intermolecular coordination environment. [source]


    Prediction of the crystal structures of perovskites using the software program SPuDS

    ACTA CRYSTALLOGRAPHICA SECTION B, Issue 6 2001
    Michael W. Lufaso
    The software program SPuDS has been developed to predict the crystal structures of perovskites, including those distorted by tilting of the octahedra. The user inputs the composition and SPuDS calculates the optimal structure in ten different Glazer tilt systems. This is performed by distorting the structure to minimize the global instability index, while maintaining rigid octahedra. The location of the A -site cation is chosen so as to maximize the symmetry of its coordination environment. In its current form SPuDS can handle up to four different A -site cations in the same structure, but only one octahedral ion. Structures predicted by SPuDS are compared with a number of previously determined structures to illustrate the accuracy of this approach. SPuDS is also used to examine the prospects for synthesizing new compounds in tilt systems with multiple A -site coordination geometries (a+a+a+, a0b+b+, a0b,c+). [source]


    Coordination polymers and hydrogen-bonded assemblies of 2,2,-[2,5-bis(carboxymethoxy)-1,4-phenylene]diacetic acid with ammonium, lanthanum and zinc cations

    ACTA CRYSTALLOGRAPHICA SECTION C, Issue 9 2010
    Hatem M. Titi
    We report the synthesis of the 2,2,-[2,5-bis(carboxymethoxy)-1,4-phenylene]diacetic acid (TALH4) ligand and the structures of its adducts with ammonium, namely diammonium 2,2,-[2,5-bis(carboxymethyl)-1,4-phenylenedioxy]diacetate, 2NH4+·C14H12O102,, (I), lanthanum, namely poly[[aquabis[,4 -2,2,-(2-carboxylatomethyl-5-carboxymethyl-1,4-phenylenedioxy)diacetato]dilanthanum(III)] monohydrate], {[La2(C14H11O10)2(H2O)]·H2O}n, (II), and zinc cations, namely poly[[{,4 -2,2,-[2,5-bis(carboxymethyl)-1,4-phenylenedioxy]diacetato}zinc(II)] trihydrate], {[Zn(C14H12O10)]·3H2O}n, (III), and poly[[diaqua(,2 -4,4,-bipyridyl){,4 -2,2,-[2,5-bis(carboxymethyl)-1,4-phenylenedioxy]diacetato}dizinc(II)] dihydrate], {[Zn2(C14H10O10)(C10H8N2)(H2O)2]·2H2O}n, (IV), the formation of all four being associated with deprotonation of TALH4. Adduct (I) is a diammonium salt of TALH22,, with the ions located on centres of crystallographic inversion. Its crystal structure reveals a three-dimensional hydrogen-bonded assembly of the component species. Reaction of TALH4 with lanthanum trinitrate hexahydrate yielded a two-dimensional double-layer coordination polymer, (II), in which the LaIII cations are nine-coordinate. With zinc dinitrate hexahydrate, TALH4 forms 1:1 two-dimensional coordination polymers, in which every ZnII cation is linked to four neighbouring TALH22, anions and each unit of the organic ligand is coordinated to four different tetrahedral ZnII cation connectors. The crystal structure of this compound accommodates molecules of disordered water at the interface between adjacent polymeric layers to give (III), and it has been determined with low precision. Another polymer assembly, (IV), was obtained when zinc dinitrate hexahydrate was reacted with TALH4 in the presence of an additional 4,4,-bipyridyl ligand. In the crystal structure of (IV), the bipyridyl and TAL4, entities are located on two different inversion centres. The ternary coordination polymers form layered arrays with corrugated surfaces, with the ZnII cation connectors revealing a tetrahedral coordination environment. The two-dimensional polymers in (II),(IV) are interconnected with each other by hydrogen bonds involving the metal-coordinated and noncoordinated molecules of water. TALH4 is doubly deprotonated, TALH22,, in (I) and (III), triply deprotonated, viz. TALH3,, in (II), and quadruply deprotonated, viz. TAL4,, in (IV). This report provides the first structural characterization of TALH4 (in deprotonated form) and its various supramolecular adducts. It also confirms the potential utility of this tetraacid ligand in the formulation of coordination polymers with metal cations. [source]


    [Cr8(PhCO2)16O4]·4CH3CN·2H2O: structural origin of magnetic anisotropy in a molecular spin cluster

    ACTA CRYSTALLOGRAPHICA SECTION C, Issue 9 2010
    John Fielden
    The Cr4O4 hetero-cubane-centered octachromium(III) cluster [Cr8(PhCO2)16O4] crystallizes from fluorobenzene,acetonitrile as dodeca-,2 -benzoato-tetrabenzoatotetra-,4 -oxido-octachromium(III) acetonitrile tetrasolvate dihydrate, [Cr8(C7H5O2)16O4]·4C2H3N·2H2O, (I). Crystals produced by this method are significantly more stable than the originally published dichloromethane pentasolvate, [Cr8(PhCO2)16O4]·5CH2Cl2 [Atkinson et al. (1999). Chem. Commun. pp. 285,286], leading to a significantly higher quality structure and allowing the production of large quantities of high-quality nondeuterated and deuterated material suitable for inelastic neutron scattering (INS) measurements. Compound (I) reveals a higher symmetry structure in which the cluster sits on a twofold rotation axis, and is based on an asymmetric unit containing four crystallographically independent Cr positions, two oxide ligands, eight benzoate ligands, two acetonitrile solvent molecules and one disordered water molecule. All the Cr atoms are six-coordinate, with an octahedral geometry for the inner cubane and a more highly distorted coordination environment in the outer positions. Despite the higher symmetry, the coordination geometries observed in (I) are largely similar to the dichloromethane pentasolvate structure, indicating that crystal-packing effects have little influence on the molecular structure of [Cr8(PhCO2)16O4]. Close structural analysis reveals that the high magnetic anisotropy observed in the INS measurements is a consequence of the distorted coordination geometry of the four outer Cr atoms. [source]


    Ammine(2,2,-bipyridine-,2N,N,)silver(I) nitrate: a dimer formed by ,,, stacking and ligand-unsupported Ag...Ag interactions

    ACTA CRYSTALLOGRAPHICA SECTION C, Issue 3 2010
    Di Sun
    Reaction of AgNO3 and 2,2,-bipyridine (bipy) under ultrasonic treatment gave the title compound, [Ag(C10H8N2)(NH3)]NO3. The crystal structure consists of dimers formed by two symmetry-related AgI,bipy monomers connected through intra-dimer ,,, stacking and ligand-unsupported Ag...Ag interactions. A crystallographic C2 axis passes through the mid-point of and is perpendicular to the Ag...Agi(,x + 1, y, ,z + ) axis. In addition, each AgI cation is coordinated by one chelating bipy ligand and one ammine ligand, giving a trigonal coordination environment capped by the symmetry-equivalent Ag atom. Molecules are assembled by Ag...Ag, ,,,, hydrogen-bond (N,H...O and C,H...O) and weak Ag..., interactions into a three-dimensional framework. Comparing the products synthesized under different mechanical treatments, we found that reaction conditions have a significant influence on the resulting structures. The luminescence properties of the title compound are also discussed. [source]


    catena -Poly[bis(trimethylphenylammonium) [hexa-,-chlorido-dichloridotricuprate(II)]]: an alternating zigzag chain of CuCl4 and Cu2Cl6 complexes

    ACTA CRYSTALLOGRAPHICA SECTION C, Issue 2 2010
    Marcus R. Bond
    The title compound, {(C9H14N)2[Cu3Cl8]}n, consists of parallel chains of alternating quasiplanar Cu2Cl6 and planar CuCl4 complexes separated by trimethylphenylammonium cations. Both inorganic complexes possess inversion symmetry. Pairs of neighboring chloride ions of the CuCl4 complex each form a symmetric bridge and an asymmetric bridge to Cu2Cl6 complexes on either side. The Cu2Cl6 complex contains two symmetric chloride bridges between the copper cations with a terminal chloride bound to each five-coordinated CuII ion. The CuCl4 complex completes its coordination environment by forming two long semicoordinate contacts to the bridging chloride ions of neighboring Cu2Cl6 complexes. The use of the bridging rather than the terminal chloride ions to form semicoordinate contacts generates a new zigzag chain structure that differs from the straight chain structures found for other A2Cu3Cl8 compounds. The zigzag chain structure is adopted so as to conform to the shorter repeat distance dictated by stacking of the organic cations. [source]


    (Acetato-,O)[tris(3,5-dimethylpyrazol-1-yl-,N2)hydroborato]zinc(II)

    ACTA CRYSTALLOGRAPHICA SECTION C, Issue 8 2009
    Azizolla Beheshti
    The title complex, [Zn(C15H22BN6)(C2H3O2)] or (TpMe,Me)Zn(OAc), contains a tripodal tris(pyrazolyl)hydroborate ligand, a monodentate acetate ligand and a ZnII centre in a distorted tetrahedral coordination environment capped on one triangular face by a secondary Zn...O interaction with the second O atom of the acetate ligand. The four-coordination of ZnII and the essentially monodentate character of the acetate ligand are due to the high steric demands of the ligand set, which prevent chelate formation and five-coordination and lead to relatively long Zn,O and Zn,N bonds compared with related complexes of ZnII and other metals. [source]


    Di-,-chlorido-bis[chlorido(4,- p -tolyl-2,2,:6,,2,,-terpyridine-,3N,N,,N,,)nickel(II)]: a supramolecular system constructed by C,H...Cl interactions

    ACTA CRYSTALLOGRAPHICA SECTION C, Issue 7 2009
    Ying-Lin Chen
    The title complex, [Ni2Cl4(C22H17N3)2], was synthesized solvothermally. The molecule is a centrosymmetric dimer with the unique NiII centre in a distorted octahedral N3Cl3 coordination environment. The chloride bridges are highly asymmetric. In the 4,- p -tolyl-2,2,:6,,2,,-terpyridine ligand, the p -tolyl group is perfectly coplanar with the attached pyridine ring, and this differs from the situation found in previously reported compounds; however, there are no ,,, interactions between the ligands. The terminal Cl atom forms four intermolecular C,H...Cl hydrogen bonds with one methyl and three methine groups. The methyl group also forms intermolecular C,H..., interactions with a pyridine ring. These nonclassical hydrogen bonds extend the molecule into a three-dimensional network. [source]


    A two-dimensional network formed by self-associating silver(I) perchlorate with 3-[4-(2-thienyl)-2H -cyclopenta[d]pyridazin-1-yl]benzonitrile

    ACTA CRYSTALLOGRAPHICA SECTION C, Issue 2 2009
    Xiao-Yan Li
    In the organometallic silver(I) supramolecular complex poly[[silver(I)-,3 -3-[4-(2-thienyl)-2H -cyclopenta[d]pyridazin-1-yl]benzonitrile] perchlorate methanol solvate], {[Ag(C18H11N3S)](ClO4)·CH3OH}n, there is only one type of AgI center, which lies in an {AgN2S,} coordination environment. Two unsymmetric multidentate 3-[4-(2-thienyl)-2H -cyclopenta[d]pyridazin-1-yl]benzonitrile (L) ligands link two AgI atoms through ,,AgI interactions into an organometallic box-like unit, from which two 3-cyanobenzoyl arms stretch out in opposite directions and bind two AgI atoms from neighboring box-like building blocks. This results in a novel two-dimensional network extending in the crystallographic bc plane. These two-dimensional sheets stack together along the crystallographic a axis to generate parallelogram-like channels. The methanol solvent molecules and the perchlorate counter-ions are located in the channels, where they are fixed by intermolecular hydrogen-bonding interactions. This architecture may provide opportunities for host,guest chemistry, such as guest molecule loss and absorption or ion exchange. The new fulvene-type multidentate ligand L is a good candidate for the preparation of Cp,AgI -containing (Cp is cyclopentadienyl) organometallic coordination polymers or supramolecular complexes. [source]


    An unprecedented three-dimensional silver(I) cluster built up from pyrazine-2,3-dicarboxylate ligands

    ACTA CRYSTALLOGRAPHICA SECTION C, Issue 2 2009
    Jian Wu
    The title complex, poly[(,-3-carboxypyrazine-2-carboxylato)(,-pyrazine-2,3-dicarboxylato)trisilver(I)], [Ag3(C6H2N2O4)(C6H3N2O4)]n or [Ag3(pzdca)(Hpzdca)]n (H2pzdca is pyrazine-2,3-dicarboxylic acid), has a three-dimensional structure. The carboxylate groups of the pzdca2, and Hpzdca, ligands adopt both bridging and chelating coordination modes. Although each AgI ion displays a tetrahedral coordination, the coordination environment of each Ag atom is very different, viz. AgN3O, AgNO3 and AgO4. [source]


    Poly[triaqua(,4 -4-carboxybenzenesulfonato-,4O:O,:O,,:O,,,)(4-carboxybenzenesulfonato-,O)strontium(II)]

    ACTA CRYSTALLOGRAPHICA SECTION C, Issue 2 2009
    G. Prochniak
    This study presents the coordination modes and two-dimensional network of a novel strontium(II) coordination polymer, [Sr(C7H5O5S)2(H2O)3]n. The eight-coordinate Sr2+ ion is in a distorted bis-disphenoidal coordination environment, surrounded by four sulfonate and one carboxyl O atom from five benzenesulfonate ligands, two of which are symmetry unique, and by three O atoms from three independent aqua ligands. The compound exhibits a monolayer structure with coordination bonds within and hydrogen bonds between the layers. The ,4 acid ligand bridges the metal ions in two dimensions to form a thick undulating monolayer with a hydrophobic interior and hydrophilic surfaces. A second independent monoanion is arranged outward from both sides of the monolayer and serves to link adjacent monolayers via carboxyl,water and water,carboxyl hydrogen bonds. [source]


    trans -Diaquabis(nicotinamide-,N)bis(salicylato-,O)cobalt(II)

    ACTA CRYSTALLOGRAPHICA SECTION C, Issue 10 2008

    The title compound, [Co(C7H5O3)2(C6H6N2O)2(H2O)2], forms a three-dimensional hydrogen-bonded supramolecular structure. The CoII ion is in an octahedral coordination environment comprising two pyridyl N atoms, two carboxylate O atoms and two O atoms from water molecules. Intermolecular N,H...O and O,H...O hydrogen bonds produce R22(8), R22(12) and R22(14) rings, which lead to two-dimensional chains. An extensive three-dimensional supramolecular network of C,H...O, N,H...O and O,H...O hydrogen bonds and C,H..., interactions is responsible for crystal structure stabilization. This study is an example of the construction of a supramolecular assembly based on hydrogen bonds in mixed-ligand metal complexes. [source]


    (N -{[4-(1,3-Benzothiazol-2-yl)anilino]carbonylmethyl-,O}iminodiacetato-,3O,N,O,)(1,10-phenanthroline-,2N,N,)cobalt(II) pentahydrate

    ACTA CRYSTALLOGRAPHICA SECTION C, Issue 4 2008
    Guo-Wu Lin
    The title compound, [Co(C19H15N3O5S)(C12H8N2)]·5H2O, has a moderately distorted octahedral coordination environment composed of two N atoms of a 1,10-phenanthroline ligand and one N and three O atoms of an N -{[4-(1,3-benzothiazol-2-yl)anilino]carbonylmethyl}iminodiacetate (ZL-52,) ligand. The ring systems of the phenanthroline and ZL-52, ligands are coplanar and the complexes pack in layers parallel to the ab plane with the rings of adjacent complexes facing one another. The layers stack along the c axis and are linked by hydrogen bonds involving the five water solvent molecules in the asymmetric unit and O atoms of the acetate groups of the ZL-52, ligand. This is believed to be the first crystal structure of a complex of a 2-(4-aminophenyl)benzothiazole ligand. [source]


    Bis(5-aminotetrazole-1-acetato-,O)tetraaquacobalt(II) and catena -poly[[cadmium(II)]-bis(,-5-aminotetrazole-1-acetato-,3N4:O,O,)]

    ACTA CRYSTALLOGRAPHICA SECTION C, Issue 1 2008
    Qiao-Yun Li
    The CoII atom in bis(5-aminotetrazole-1-acetato)tetraaquacobalt(II), [Co(C3H4N5O2)2(H2O)4], (I), is octahedrally coordinated by six O atoms from two 5-aminotetrazole-1-acetate (atza) ligands and four water molecules. The molecule has a crystallographic centre of symmetry located at the CoII atom. The molecules of (I) are interlinked by hydrogen-bond interactions, forming a two-dimensional supramolecular network structure in the ac plane. The CdII atom in catena -poly[[cadmium(II)]-bis(,-5-aminotetrazole-1-acetato], [Cd(C3H4N5O2)2]n, (II), lies on a twofold axis and is coordinated by two N atoms and four O atoms from four atza ligands to form a distorted octahedral coordination environment. The CdII centres are connected through tridentate atza bridging ligands to form a two-dimensional layered structure extending along the ab plane, which is further linked into a three-dimensional structure through hydrogen-bond interactions. [source]


    Three hexafluoridoiridates(IV), Ca[IrF6]·2H2O, Sr[IrF6]·2H2O and Ba[IrF6]

    ACTA CRYSTALLOGRAPHICA SECTION C, Issue 11 2007
    Anton I. Smolentsev
    The structures of the hexafluoridoiridates(IV) of calcium, Ca[IrF6]·2H2O [calcium hexafluoridoiridate(IV) dihydrate], strontium, Sr[IrF6]·2H2O [strontium hexafluoridoiridate(IV) dihydrate], and barium, Ba[IrF6] [barium hexafluoridoiridate(IV)], have been determined by single-crystal X-ray analysis. The first two compounds are isomorphous. Their metal cations are eight-coordinated in a distorted square-antiprismatic coordination environment, and their anions are represented by an almost ideal octahedron. These two structures can be described as frameworks in which all atoms occupy general positions. Sr[RhF6] and Ba[RhF6] have a different space group (, from powder diffraction data) but similar cell dimensions. The structures are very close to that of Ba[IrF6]. The cation is in a cuboctahedral coordination. The metal atoms are located on special positions of symmetry, while the F atoms are in general positions. [source]


    Poly[[hexaaquabis[,4 -2-hydroxy-5-(4-sulfonatophenyldiazenyl)benzoato]dibarium(II)] 4,4,-bipyridine solvate]

    ACTA CRYSTALLOGRAPHICA SECTION C, Issue 9 2007
    Hong Liu
    The title compound, {[Ba2(C13H8N2O6S)2(H2O)6]·C10H8N2}n, possesses a novel two-dimensional porous coordination network, in which each BaII ion is nine-coordinated by three carboxylate O atoms, two sulfonate O atoms and four water molecules in an irregular coordination environment. Hydrogen-bond interactions between coordinated water molecules and sulfonate/hydroxyl groups hold the network layers together and produce a three-dimensional supramolecular architecture. [source]


    Tetra­aqua­bis(5-carb­oxy-2-nitro­benzo­ato-,O)manganese(II) dihydrate: a metal,water chain complex containing cyclic water tetra­mers

    ACTA CRYSTALLOGRAPHICA SECTION C, Issue 3 2007
    Li-Qin Xiong
    In the title complex, [Mn(C8H4NO6)2(H2O)4]·2H2O, cyclic water tetra­mers forming one-dimensional metal,water chains have been observed. The water clusters are trapped by the co-­operative association of coordination inter­actions and hydrogen bonds. The MnII ion resides on a center of symmetry and is in an octa­hedral coordination environment comprising two O atoms from two 5-carboxy-2-nitrobenzoate ligands and four O atoms from water mol­ecules. [source]


    Poly[[di-,3 -acetato-di-,2 -aqua-diaqua-di-,3 -hydroxo-tricopper(II)] naphthalene-1,5-disulfonate]

    ACTA CRYSTALLOGRAPHICA SECTION C, Issue 12 2006
    Li-Li Kong
    The crystal structure of the title complex, {[Cu3(C2H3O2)2(OH)2(H2O)4](C10H6O6S2)}n, is built of infinite polymeric cationic {[Cu3(C2H3O2)2(H2O)4(OH)2]2+}n chains stretching along the a axis, with naphthalene-1,5-disulfonate (1,5-nds) anions in between. One independent CuII cation and the 1,5-nds anion occupy special positions on crystallographic inversion centres. Each CuII cation has an octa­hedral coordination environment formed by two carboxyl O atoms, two hydroxo O atoms and two water mol­ecules. The carboxyl­ate and hydroxo groups perform a bridging function, linking adjacent Cu atoms in the chain, with a shortest Cu,Cu distance of 2.990,(3),Å. The chains are further linked into a three-dimensional supra­molecular framework via hydrogen-bonding inter­actions involving the sulfonate groups of the 1,5-­nds dianions. [source]