Home About us Contact | |||
Activity Period (activity + period)
Selected AbstractsEcological Traits Predicting Amphibian Population Declines in Central AmericaCONSERVATION BIOLOGY, Issue 4 2003Karen R. Lips Populations of some species are extirpated, others have declined but survive, some have not obviously declined, and some are increasing. If amphibian populations at multiple sites were affected by the same factors, then surviving species should share traits that promote persistence, whereas declining species should share traits that promote susceptibility. Identifying these traits can help diagnose potential causes and thus help to direct conservation actions. Using logistic regression, we quantified the vulnerability of amphibian populations in four areas in Central America. We analyzed a species-specific database of taxonomic identity, geographic and elevational range, elevational distribution, adult and larval habitat, activity period, and maximum adult body size. We found that ( 1 ) all four sites exhibited the same pattern of decline ( there were no interactions between site and other variables ); ( 2 ) declining populations shared aquatic habitats, restricted elevational ranges, and large body sizes; and ( 3 ) there was an interaction between body size and elevational range. The most significant variable in the model was lifetime aquatic index, a factor unrelated to demographic vulnerability and one that therefore might indicate the potential causative agent( s ). Our results provide a predictive model with which to assess potential causes of population declines in other areas, and we generated a list of 52 species predicted to decline at a currently unaffected site in central Panama. Resumen: Las poblaciones de anfibios están declinando en todos los continentes donde ocurren, pero no todas las especies han sido afectadas por igual. Algunas especies han sido extirpadas, otras han declinado pero sobreviven, algunas no han declinado notablemente y otras están aumentando. Si las poblaciones de anfibios en varios sitios fueran afectadas por los mismos factores, las especies sobrevivientes deberían compartir características que promuevan la persistencia mientras que las especies en declinación deberían compartir características que promuevan la susceptibilidad. La identificación de estas características puede ayudar a diagnosticar las causas potenciales y así ayudar a dirigir medidas de conservación. Utilizando regresión logística, cuantificamos la vulnerabilidad de las poblaciones de anfibios en cuatro áreas de Centro América. Analizamos una base de datos de identidad taxonómica de especies, rango geográfico y altitudinal, distribución altitudinal, hábitat de larvas y adultos, período de actividad y máxima talla corporal de adultos. Encontramos que ( 1 ) los cuatro sitios presentaron el mismo patrón de declinación ( no hubo interacciones entre el sitio y otras variables ), ( 2 ) las poblaciones en declinación compartieron hábitats acuáticos, rangos altitudinales restringidos y tamaño corporal grande y ( 3 ) hubo interacción entre el tamaño corporal y el rango altitudinal. La variable más significativa del modelo fue el índice de vida acuática, un factor no relacionado con la vulnerabilidad demográfica y que, por lo tanto, podría indicar el agente causal potencial. Nuestros resultados proporcionan un modelo predictivo para evaluar las causas potenciales de declinación poblacional en otras áreas, y generamos una lista de 52 especies de declinación prevista en un sitio actualmente no afectado del centro de Panamá. [source] The termination of the last major phase of aeolian sand movement, coastal dunefields, DenmarkEARTH SURFACE PROCESSES AND LANDFORMS, Issue 7 2006Lars B. Clemmensen Abstract Optically stimulated luminescence (OSL) dating of sand samples from stabilized (or inactive) coastal dunes in Denmark provides information on the age of the termination phase of the last major aeolian activity period. A total of 26 sand samples were taken from four different coastal dunefields around the North Sea, Skagerrak and Kattegat coasts of Denmark. The OSL dates indicate that the last major phase of aeolian activity terminated between ad 1860 and 1905. Most of the dunes examined in this study were active around 1820, during a period documented to have been very stormy. A dune management scheme started around 1792, and this no doubt was a major cause of dunefield stabilization, but an overall decline of storminess, particularly spring and summer storminess, around the end of the 19th century must also have contributed to the increasing inactivity of coastal dunes. The new OSL dates on aeolian sand movement agree well with historical data and data from topographic maps on dune movement. This agreement supports the observation from earlier work that OSL dating of recent aeolian sand movement is accurate over the last few decades to centuries. Copyright © 2005 John Wiley & Sons, Ltd. [source] Sexual patterns of prebreeding energy reserves in the common frog Rana temporaria along a latitudinal gradientECOGRAPHY, Issue 5 2009K. Ingemar Jönsson The ability to store energy is an important life history trait for organisms facing long periods without energy income, and in particular for capital breeders such as temperate zone amphibians, which rely on stored energy during reproduction. However, large scale comparative studies of energy stores in populations with different environmental constraints on energy allocation are scarce. We investigated energy storage patterns in spring (after hibernation and before reproduction) in eight common frog Rana temporaria populations exposed to different environmental conditions along a 1600,km latitudinal gradient across Scandinavia (range of annual activity period is 3,7,months). Analyses of lean body weight (eviscerated body mass), weight of fat bodies, liver weight, and liver fat content, showed that 1) post-hibernation/pre-breeding energy stores increased with increasing latitude in both sexes, 2) males generally had larger energy reserves than females and 3) the difference in energy stores between sexes decreased towards the north. Larger energy reserves towards the north can serve as a buffer against less predictable and/or less benign weather conditions during the short activity period, and may also represent a risk-averse tactic connected with a more pronounced iteroparous life history. In females, the continuous and overlapping vitellogenic activity in the north may also demand more reserves in early spring. The general sexual difference could be a consequence of the fact that, at the time of our sampling, females had already invested their energy into reproduction in the given year (i.e. their eggs were already ovulated), while the males' main reproductive activities (e.g. calling, mate searching, sexual competition) occurred later in the season. [source] Spatial patterns, temporal variability, and the role of multi-nest colonies in a monogynous Spanish desert antECOLOGICAL ENTOMOLOGY, Issue 1 2002Xim Cerdá Abstract 1.,The colonies of the Spanish desert ant Cataglyphis iberica are polydomous. This study describes the temporal and spatial patterns of the polydomy in this species at two different sites, and presents analyses of its role in reducing the attacks of the queen over sexual brood, and in allowing better habitat exploitation. 2. The spatial distribution of nests was clumped while colonies were distributed randomly. Mean nearest neighbour distance ranged from 3.4 to 7.0 m for nests and from 12.3 to 14.1 m for colonies. Distance of foragers searching for food varied among nests: mean values were between 6.1 and 12.6 m. 3. At both sites, the maximum number of nests per colony occurred in summer, during the maximum activity period of the species. Colonies regrouped at the end of this period but overwintered in several nests. 4. Nest renewal in C. iberica colonies was high and showed great temporal variability: nests changed (open, close, re-open) continuously through the activity season and/or among years. The lifetime of up to 55% of nests was only 1,3 months. 5. Polydomy in C. iberica might decrease the interactions between the queen and the sexual brood. In all colonies excavated just before the mating period, the nest containing the queen did not contain any virgin female. Females were in the queenless nests of the colony. 6. The results also suggest that polydomous C. iberica colonies may enhance habitat exploitation because foraging activity per colony increases with nest number. The relationship between total prey input and foraging efficiency and number of nests per colony attains a plateau or even decreases after a certain colony size (four to six nests). This value agrees with the observed mean number of nests per colony in C. iberica. [source] Colour polymorphism in birds: causes and functionsJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 4 2003P. Galeotti Abstract We studied polymorphism in all species of birds that are presently known to show intraspecific variation in plumage colour. At least three main mechanisms have been put forward to explain the maintenance of polymorphism: apostatic, disruptive and sexual selection. All of them make partly different predictions. Our aims were to investigate evolutionary causes and adaptive functions of colour polymorphism by taking into account a number of ecological and morphological features of polymorphic species. Overall, we found 334 species showing colour polymorphism, which is 3.5% of all bird species. The occurrence of colour polymorphism was very high in Strigiformes, Ciconiiformes, Cuculiformes and Galliformes. Phylogenetically corrected analysis using independent contrasts revealed that colour polymorphism was maximally expressed in species showing a daily activity rhythm extended to day/night, living in both open and closed habitats. All these findings support the hypothesis that colour polymorphism probably evolved under selective pressures linked to bird detectability as affected by variable light conditions during activity period. Thus, we conclude that selective agents may be prey, predators and competitors, and that colour polymorphism in birds may be maintained by disruptive selection. [source] The Metabolic Syndrome: A Brain Disease?JOURNAL OF NEUROENDOCRINOLOGY, Issue 9 2006Ruud M Buijs Summary The incidence of obesity with, as consequence, a rise in associated diseases such as diabetes, hypertension and dyslipidemia , the metabolic syndrome , is reaching epidemic proportions in industrialized countries. Here, we provide a hypothesis that the biological clock which normally prepares us each morning for the coming activity period is altered due to a modern life style of low activity during the day and late-night food intake. Furthermore, we review the anatomical evidence supporting the proposal that an unbalanced autonomic nervous system output may lead to the simultaneous occurrence of diabetes type 2, dyslipidemia, hypertension and visceral obesity. [source] Daily Rhythms in Glucose Metabolism: Suprachiasmatic Nucleus Output to Peripheral TissueJOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2003S. E. La Fleur Abstract The body has developed several control mechanisms to maintain plasma glucose concentrations within strict boundaries. Within those physiological boundaries, a clear daily rhythm in plasma glucose concentrations is present; this rhythm depends on the biological clock, which is located in the hypothalamic suprachiasmatic nucleus (SCN), and is independent of the daily rhythm in food intake. Interestingly, there is also a daily rhythm in glucose uptake, which also depends on the SCN and follows the same pattern as the daily rhythm in plasma glucose concentrations; both rise before the onset of activity. Thus, the SCN prepares the individual for the upcoming activity period in two different ways: by increasing plasma glucose concentrations and by facilitating tissue glucose uptake. In addition to this anticipation of glucose metabolism to expected glucose demands, the SCN also influences, depending on the time of the day, the responses of pancreas and liver to abrupt glucose changes (such as a glucose rise after a meal or hypoglycaemia). This review presents the view that the SCN uses different routes to (i) maintain daily glucose balance and (ii) set the level of the endocrine response to abrupt blood glucose changes. [source] Caladium bicolor (Araceae) and Cyclocephala celata (Coleoptera, Dynastinae): A Well-Established Pollination System in the Northern Atlantic Rainforest of Pernambuco, BrazilPLANT BIOLOGY, Issue 4 2006A. C. D. Maia Abstract: Flowering, pollination ecology, and floral thermogenesis of Caladium bicolor were studied in the Atlantic Rainforest of Pernambuco, NE Brazil. Inflorescences of this species are adapted to the characteristic pollination syndrome performed by Cyclocephalini beetles. They bear nutritious rewards inside well-developed floral chambers and exhibit a thermogenic cycle which is synchronized to the activity period of visiting beetles. Heating intervals of the spadix were observed during consecutive evenings corresponding to the beginning of the female and male phases of anthesis. Highest temperatures were recorded during the longer-lasting female phase. An intense sweet odour was volatized on both evenings. Beetles of a single species, Cyclocephala celata, were attracted to odoriferous inflorescences of C. bicolor and are reported for the first time as Araceae visitors. All the inflorescences visited by C. celata developed into infructescences, whereas unvisited inflorescences showed no fruit development. Findings of previous studies in the Amazon basin of Surinam indicated that Cyclocephala rustica is a likely pollinator of C. bicolor. This leads to the assumption that locally abundant Cyclocephalini species are involved in the pollination of this species. [source] Seasonality of a Diverse Beetle Assemblage Inhabiting Lowland Tropical Rain Forest in AustraliaBIOTROPICA, Issue 3 2009Peter S. Grimbacher ABSTRACT One of the least understood aspects of insect diversity in tropical rain forests is the temporal structuring, or seasonality, of communities. We collected 29,986 beetles of 1473 species over a 4-yr period (45 monthly samples), with the aim to document the temporal dynamics of a trophically diverse beetle assemblage from lowland tropical rain forest at Cape Tribulation, Australia. Malaise and flight interception traps were used to sample adult beetles at five locations at both ground and canopy levels. Beetles were caught throughout the year, but individual species were patchy in their temporal distribution, with the 124 more abundant species on average being present only 56 percent of the time. Climatic variables (precipitation, temperature, and solar radiation) were poorly correlated with adult beetle abundance, possibly because: (1) seasonality of total beetle abundance was slight; (2) the peak activity period (September,November) did not correspond to any climatic maxima or minima; or (3) responses were nonlinear owing to the existence of thresholds or developmental time-lags. Our results do not concur with the majority of tropical insect seasonality studies suggesting a wet season peak of insect activity, perhaps because there is no uniform pattern of insect seasonally for the humid tropics. Herbivores showed low seasonality and individual species' peaks were less temporally aggregated compared to nonherbivores. Canopy-caught and larger beetles (> 5 mm) showed greater seasonality and peaked later in the year compared to smaller or ground-caught beetles. Thus seasonality of adult beetles varied according to the traits of feeding ecology, body size, and habitat strata. [source] ACCOUNTING FOR TEMPERATURE IN PREDATOR FUNCTIONAL RESPONSESNATURAL RESOURCE MODELING, Issue 4 2007J. DAVID LOGAN ABSTRACT. A rational mechanism that integrates temperature-mediated activity cycles into standard predator functional responses is presented. Daily temperature variations strongly influence times that predators can search for prey, and they affect the activity periods of prey, thereby modifying their detection by predators. Thus, key parameters in the functional response, the search time and the detection, become temperature-dependent. These temperature mediated responses are included in discrete-time population growth models, and it is shown how environmental temperature variations, such as those that may occur under global climate change, can affect population levels. As an illustration, a logistic growth model with a stochastic, temperature-dependent predation term is examined, and the response to both average temperature levels and temperature variability is quantified. We infer, through simulations, that predation and prey abundance are strongly affected by mean temperature, temperature amplitudes, and increasing uncertainty in predicting temperature levels and variation, thus confirming many qualitative conclusions in the ecological literature. In particular, we show that increased temperature variability increases oscillations in the system and leads to increased probability of extinction of the prey. [source] |