Activity Loss (activity + loss)

Distribution by Scientific Domains


Selected Abstracts


Examination of the Aromatic Amination Catalyzed by Palladium on Charcoal

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 9 2010
Anna Komáromi
Abstract The Buchwald,Hartwig amination of aryl halides with secondary amines and functionalized aromatic amines catalyzed by solid-supported palladium is reported. The choices of ligand, base and solvent are crucial for the successful coupling. The amination of aromatic iodides, bromides and chlorides can be easily achieved with palladium on charcoal in the presence of a biphenylphosphane-type ligand at 80,110,°C. In addition, the palladium on charcoal catalyst is easily separable after the reaction, and reusable several times with only small activity loss. [source]


PURIFICATION AND CHARACTERIZATION OF BACTERIOCIN FROM WEISSELLA PARAMESENTEROIDES DFR-8, AN ISOLATE FROM CUCUMBER (CUCUMIS SATIVUS)

JOURNAL OF FOOD BIOCHEMISTRY, Issue 5 2010
AJAY PAL
ABSTRACT Bacteriocin from Weissella paramesenteroides DFR-8 isolated from cucumber (Cucumis sativus) was purified by using only two steps, viz., pH-mediated cell adsorption,desorption method and gel permeation chromatography. A single peak observed in the purity check by analytical Reverse Phase-High Performance Liquid Chromatography (Waters 600 analytical HPLC system, Milford, MA) and a single band (molecular weight,3.74 kDa) shown on SDS-PAGE analysis strongly indicated the homogeneity of the bacteriocin preparation. Treatment with proteolytic enzymes abolished the antimicrobial activity indicating the proteinaceous nature of bacteriocin. The purified bacteriocin exhibited a broad inhibitory spectrum against foodborne pathogens and spoilage microorganisms, including gram-negative bacteria such as Salmonella typhimurium, Vibrio parahaemolyticus, Aeromonas hydrophila and Listeria monocytogenes. Response surface methodology was employed to study the interactive effect of temperature and pH on bacteriocin activity, and a regression equation was developed. The bacteriocin retained full activity after storage at,20C for 90 days, while partial and complete activity loss was observed when stored at 4 and 37C, respectively. PRACTICAL APPLICATION In recent years, bacteriocins of lactic acid bacteria have gained much attention as food biopreservatives because of their origin from generally regarded as safe organisms. In spite of various bacteriocins studied worldwide, studies on bacteriocins of Weissella paramesenteroides remain rare. The present work involves the purification of bacteriocin up to absolute homogeneity from W. paramesenteroides, an isolate first time reported from cucumber (Cucumis sativus). The purified bacteriocin (molecular weight ,3.74 kDa) was found to inhibit a large number of foodborne pathogens, including Listeria monocytogenes, which is resistant to commercially available bacteriocin, i.e., nisin. The application of central composite rotatable design enabled us to design a regression equation from which the residual activity of bacteriocin can be predicted at any given conditions of temperature and pH within the experimental domain. The broad inhibitory spectrum and thermostability of bacteriocin suggest its potential application in food preservation. [source]


Nanodisks protect amphotericin B from ultraviolet light and oxidation-induced damage

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 6 2009
Megan L Tufteland
Abstract BACKGROUND: Macrolide polyene antibiotics possess potent broad-spectrum antifungal properties. Use of these agents in the field or in controlled environments is impeded by their poor water solubility and susceptibility to oxidation- and/or light-induced degradation. While typically used for human disease therapy, there is potential to expand the utility of polyene macrolide antibiotics, such as amphotericin B, for control of fungal disease infestation in agricultural settings. Thus, the susceptibility of this antibiotic to exposure-induced activity loss was evaluated. RESULTS: Incubation of the prototype polyene amphotericin B (AMB) with phospholipid vesicles and apolipoprotein A-I results in the formation of nanoscale complexes, termed nanodisks (NDs), capable of solubilizing significant quantities of AMB. To evaluate whether AMB incorporation into NDs conferred protection against light- or oxidation-induced damage, yeast growth inhibition assays were conducted. Compared with AMB solubilized in detergent micelles, AMB incorporated into NDs was protected from damage caused by exposure to UV light as well as by KMnO4 -induced oxidation. Furthermore, AMB-NDs inhibited growth of the turfgrass fungus Marasmius oreades Fr. CONCLUSION: Results suggest that this water-soluble formulation of a natural, biodegradable, antifungal agent represents a potential cost-effective, non-toxic and environmentally friendly substitute for chemical agents currently employed to control a range of fungal infestations. Copyright © 2009 Society of Chemical Industry [source]


Calorimetric Studies on Dry Pectinlyase Preparations: Impact of Glass Transition on Inactivation Kinetics

BIOTECHNOLOGY PROGRESS, Issue 4 2001
Viviana M. Taragano
The glass transition temperature (Tg) of a dry ultrafiltrated pectinlyase (PL) preparation decreased from 56 to 24 °C when water content increased to 20%. The thermal transition temperature (Tp) for protein denaturation decreased greatly up to 40% moisture; above 40% no further changes in Tp were observed. In the glassy state, a lag period of approximately 7 days with no PL activity loss was observed; after that, PL activity was lost. Above Tg, the rates of PL inactivation greatly increased. In the glassy state Ea was 16.6 kJ/mol. When the system was in a higher mobility state (rubbery), Ea increased to 66.5 kJ/mol. [source]


Glass Transition Temperatures and Fermentative Activity of Heat-Treated Commercial Active Dry Yeasts

BIOTECHNOLOGY PROGRESS, Issue 2 2000
Carolina Schebor
Differential scanning calorimetry thermograms of various samples of commercial instant active dry yeasts revealed a clear glass transition typical of amorphous carbohydrates and sugars. The resulting glass transition temperatures were found to decrease with increasing moisture content. The observed glass curve was similar to that of pure trehalose, which is known to accumulate in large amounts in baker's yeast. The effect of heat treatment at various temperatures on the fermentative activity (as measured by the metabolic production of CO2) of dry yeast was studied. First-order plots were obtained representing the loss of fermentative activity as a function of heating time at the various temperatures assayed. Significant losses of fermentative activity were observed in vitrified yeast samples. The dependence of rate constants with temperature was found to follow Arrhenius behavior. The relationship between the loss of fermentative activity and glass transition was not verified, and the glass transition was not reflected on the temperature dependence of fermentative activity loss. [source]


Cobalt(II) octanoate and cobalt(II) perfluorooctanoate catalyzed atom transfer radical polymerization of styrene in toluene and fluorous media,A versatile route to catalyst recycling and oligomer formation

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 17 2005
Marc-Stephan Weiser
Abstract Cobalt(II) perfluorooctanoate-catalyzed atom transfer radical polymerization (ATRP) and reverse ATRP were developed to prepare oligostyrenes (Mn < 2500) with low polydispersities Mw/Mn < 1.5. Fluorous biphase catalysis was applied for effective recycling of catalyst and fluorous solvent. The homogeneous polymerization reaction was performed at 90 °C in toluene/cyclohexane/perfluorodecalin mixture (1:1:1) and fluorine-free solvents. Temperature-induced phase separation of this fluorous solvent mixture occurred at room temperature and proved to be the key for the very effective separation of the cobalt(II) perfluorooctanoate from the oligostyrene and fluorine-free solvents. Both the fluorine-tagged cobalt catalysts and the fluorous media were recycled and reused up to three times without encountering catalyst activity losses. The roles of cobalt catalysts, fluorous media, and monomer/initiator ratio were examined with respect to the polymerization kinetics. Fluorine-containing and fluorine-free cobalt(II) octanoate catalyzed controlled styrene oligomerization according to the ATRP mechanism. The molar mass control range was limited in fluorous biphase catalysis most likely because of precipitation of high molar mass polystyrenes in the fluorous reaction medium. To the best of our knowledge, this is the first time temperature-induced phase separation of fluorous and fluorine-free solvents has been successfully applied to polymerization processing. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3804,3813, 2005 [source]