Activity Density (activity + density)

Distribution by Scientific Domains


Selected Abstracts


Trophic level modulates carabid beetle responses to habitat and landscape structure: a pan-European study

ECOLOGICAL ENTOMOLOGY, Issue 2 2010
ADAM J. VANBERGEN
1. Anthropogenic pressures have produced heterogeneous landscapes expected to influence diversity differently across trophic levels and spatial scales. 2. We tested how activity density and species richness of carabid trophic groups responded to local habitat and landscape structure (forest percentage cover and habitat richness) in 48 landscape parcels (1 km2) across eight European countries. 3. Local habitat affected activity density, but not species richness, of both trophic groups. Activity densities were greater in rotational cropping compared with other habitats; phytophage densities were also greater in grassland than forest habitats. 4. Controlling for country and habitat effects, we found general trophic group responses to landscape structure. Activity densities of phytophages were positively correlated, and zoophages uncorrelated, with increasing habitat richness. This differential functional group response to landscape structure was consistent across Europe, indicated by a lack of a country × habitat richness interaction. Species richness was unaffected by landscape structure. 5. Phytophage sensitivity to landscape structure may arise from relative dependency on seed from ruderal plants. This trophic adaptation, rare in Carabidae, leads to lower phytophage numbers, increasing vulnerability to demographic and stochastic processes that the greater abundance, species richness, and broader diet of the zoophage group may insure against. [source]


Refuge habitats modify impact of insecticide disturbance on carabid beetle communities

JOURNAL OF APPLIED ECOLOGY, Issue 2 2001
Jana C. Lee
Summary 1Carabid beetles are polyphagous predators that can act as biological control agents of insect pests and weeds. While current agricultural practices often create a harsh environment, habitat management such as the establishment of within-field refuges has been proposed to enhance carabid beetle abundance and impact. We examined the joint effects of refuge habitats and insecticide application on carabid activity density (parameter of population density and relative activity) and species composition in a cornfield. 2Our 2-year study comprised four treatments: (i) ,refuge/,insecticide; (ii) +refuge/,insecticide; (iii) ,refuge/+insecticide; (iv) +refuge/+insecticide. Refuge strips consisted of grasses, legumes and perennial flowering plants. ,,Refuge' strips were planted with corn and not treated with insecticide. 3Before planting and insecticide application, carabid activity density in the crop areas was similar across all treatments. Insecticide application immediately reduced carabid activity density and altered community composition in the crop area. 4Refuge strips had significantly higher activity density of beetles than ,refuge strips before planting and during the summer. 5During summer, as new carabids emerged and insecticide toxicity declined, the presence of refuge strips influenced carabids in the adjacent crop area. Carabid activity density within crop areas previously treated with insecticide was significantly higher when adjacent to refuge strips. Also, carabid communities within insecticide-treated crop areas were affected by the presence or absence of a refuge strip. 6The presence of refuge strips did not consistently augment carabid numbers in crop areas where insecticide was not applied. One explanation may be that insecticides decreased the quality of crop habitat to carabids by depletion of prey and direct mortality. However, subsequent rebounds in prey density and the absence of competing predators may make these areas relatively more attractive than unperturbed crop habitats to carabid colonization from refuges. 7This study demonstrates that refuges may buffer the negative consequences of insecticide application on carabids in adjacent fields. Diversifying agro-ecosystems with refuge habitats may be a viable strategy for maintaining carabid populations in disturbed agricultural landscapes to keep pests below outbreak levels. [source]


Post-dispersal predation of Taraxacum officinale (dandelion) seed

JOURNAL OF ECOLOGY, Issue 2 2005
ALOIS HONEK
Summary 1The importance of predation in determining the fate of post-dispersal dandelion (Taraxacum officinale) seed was investigated. Flowering, seed dispersal, seedling establishment, seed predation and seed predator abundance were recorded in 2002 and 2003, at two sites. Number of flowers were counted in 1-m2 plots, wind-borne seeds were collected in water traps, invertebrate seed predation was estimated from the rate of removal of dandelion seeds exposed on the ground and invertebrate activity density was determined by using pitfall traps. The censuses were made at 2- to 3-day intervals. 2Seed dispersal occurred 10 days after flowering. Although some seeds were blown away, 3.7,24.2 × 103 seeds m,2 fell to the ground. Four weeks after the peak in seed dispersal 0.7,3.1% of these seeds germinated. Three weeks later only 11,13% of the dispersed seed remained on the ground and most of these were damaged, the remainder presumably having been removed by predators. 3Predation of exposed seeds was low before seed dispersal but increased after its onset, in parallel with increases in the number of seeds present on the ground and in the activity density of adults of a seed-consuming carabid, Amara montivaga. 4In cafeteria experiments in which the seeds of 28 perennial and annual herbs were provided A. montivaga consumed the most dandelion seeds, followed by nine other Amara species. In no-choice experiments, under field conditions, A. montivaga consumed six seeds day,1. 5Post-dispersal predation, mainly due to aggregation of a single ground beetle species, was more important than that which occurred prior to dispersal. Although predators destroyed c. 97% of the seeds, the effect on dandelion population biology is likely to be small. 6Post-dispersal seed predation may nevertheless be important in other species, as aggregates of large invertebrate predators can consume large quantities of seed. [source]


Generalist predators in organically and conventionally managed grass-clover fields: implications for conservation biological control

ANNALS OF APPLIED BIOLOGY, Issue 2 2008
K Birkhofer
Abstract Organically managed agroecosystems rely in part on biological control to prevent pest outbreaks. Generalist predators (Araneae, Carabidae and Staphylinidae) are a major component of the natural enemy community in agroecosystems. We assessed the seasonal dynamics of major generalist predator groups in conventionally and organically managed grass,clover fields that primarily differed by fertilisation strategy. We further established an experiment, manipulating the abundant wolf spider genus Pardosa, to identify the importance of these predators for herbivore suppression in the same system and growth period. Organic management significantly enhanced ground-active spider numbers early and late in the growing season, with potentially positive effects of plant cover and non-pest decomposer prey. However, enhancing spider numbers in the field experiment did not improve biological control in organically managed grass,clover fields. Similar to the survey results, reduced densities of Pardosa had no short-term effect on any prey taxa; however, spider guild structure changed in response to Pardosa manipulation. In the presence of fewer Pardosa, other ground-running spiders were more abundant; therefore, their impact on herbivore numbers may have been elevated, possibly cancelling increases in herbivore numbers because of reduced predation by Pardosa. Our results indicate positive effects of organic farming on spider activity density; however, our survey data and the predator manipulation experiment failed to find evidence that ground-running spiders reduced herbivore numbers. We therefore suggest that a positive impact of organic fertilisers on wolf spiders in grass,clover agroecosystems may not necessarily improve biological control when compared with conventional farming. [source]