Home About us Contact | |||
Active Lipid Mediator (active + lipid_mediator)
Selected Abstracts,-Tocopheryl phosphate , An active lipid mediator?MOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 5 2010Jean-Marc Zingg Abstract The vitamin E (,-tocopherol, ,T) derivative, ,-tocopheryl phosphate (,TP), is detectable in small amounts in plasma, tissues, and cultured cells. Studies done in vitro and in vivo suggest that ,T can become phosphorylated and ,TP dephosphorylated, suggesting the existence of enzyme(s) with ,T kinase or ,TP phosphatase activity, respectively. As a supplement in animal studies, ,TP can reach plasma concentrations similar to ,T and only a part is dephosphorylated; thus, ,TP may act both as pro-vitamin E, but also as phosphorylated form of vitamin E with possibly novel regulatory activities. Many effects of ,TP have been described: in the test tube ,TP modulates the activity of several enzymes; in cell culture ,TP affects proliferation, apoptosis, signal transduction, and gene expression; in animal studies ,TP prevents atherosclerosis, ischemia/reperfusion injury, and induces hippocampal long-term potentiation. At the molecular level, ,TP may act as a cofactor for enzymes, as an active lipid mediator similar to other phosphorylated lipids, or indirectly by altering membrane characteristics such as lipid rafts, fluidity, and curvature. In this review, the molecular and cellular activities of ,TP are examined and the possible functions of ,TP as a natural compound, cofactor and active lipid mediator involved in signal transduction and gene expression discussed. [source] Regulation of Wnt/,-catenin pathway by cPLA2, and PPAR,JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2008Chang Han Abstract Cytosolic phospholipase A2, (cPLA2,) is a rate-limiting key enzyme that releases arachidonic acid (AA) from membrane phospholipid for the production of biologically active lipid mediators including prostaglandins, leukotrienes and platelet-activating factor. cPLA2, is translocated to nuclear envelope in response to intracellular calcium increase and the enzyme is also present inside the cell nucleus; however, the biological function of cPLA2, in the nucleus remains unknown. Here we show a novel role of cPLA2, for activation of peroxisome proliferator-activated receptor-, (PPAR,) and ,-catenin in the nuclei. Overexpression of cPLA2, in human cholangiocarcinoma cells induced the binding of PPAR, to ,-catenin and increased their association with the TCF/LEF response element. These effects are inhibited by the cPLA2, siRNA and inhibitors as well as by siRNA knockdown of PPAR,. Overexpression of PPAR, or treatment with the selective PPAR, ligand, GW501516, also increased ,-catenin binding to TCF/LEF response element and increased its reporter activity. Addition of AA and GW501516 to nuclear extracts induced a comparable degree of ,-catenin binding to TCF/LEF response element. Furthermore, cPLA2, protein is present in the PPAR, and ,-catenin binding complex. Thus the close proximity between cPLA2, and PPAR, provides a unique advantage for their efficient functional coupling in the nucleus, where AA produced by cPLA2, becomes immediately available for PPAR, binding and subsequent ,-catenin activation. These results depict a novel interaction linking cPLA2,, PPAR, and Wnt/,-catenin signaling pathways and provide insight for further understanding the roles of these key molecules in human cells and diseases. J. Cell. Biochem. 105: 534,545, 2008. © 2008 Wiley-Liss, Inc. [source] Leukotriene pathway genetics and pharmacogenetics in allergyALLERGY, Issue 6 2009N. P. Duroudier Leukotrienes (LT) are biologically active lipid mediators known to be involved in allergic inflammation. Leukotrienes have been shown to mediate diverse features of allergic conditions including inflammatory cell chemotaxis/activation and smooth muscle contraction. Cysteinyl leukotrienes (LTC4, LTD4 and, LTE4) and the dihydroxy leukotriene LTB4 are generated by a series of enzymes/proteins constituting the LT synthetic pathway or 5-lipoxygenase (5-LO) pathway. Their function is mediated by interacting with multiple receptors. Leukotriene receptor antagonists (LTRA) and LT synthesis inhibitors (LTSI) have shown clinical efficacy in asthma and more recently in allergic rhinitis. Despite growing knowledge of leukotriene biology, the molecular regulation of these inflammatory mediators remains to be fully understood. Genes encoding enzymes of the 5-LO pathway (i.e. ALOX5, LTC4S and LTA4H) and encoding for LT receptors (CYSLTR1/2 and LTB4R1/2) provide excellent candidates for disease susceptibility and severity; however, their role remains unclear. Preliminary data also suggest that 5-LO pathway/receptor gene polymorphism can predict patient responses to LTSI and LTRA; however, the exact mechanisms require elucidation. The aim of this review was to summarize the recent advances in the knowledge of these important mediators, focusing on genetic and pharmacogenetic aspects in the context of allergic phenotypes. [source] |