Home About us Contact | |||
Activated K+ Channels (activated + k+_channel)
Selected AbstractsAntecedent Ethanol Attenuates Cerebral Ischemia/Reperfusion-Induced Leukocyte-Endothelial Adhesive Interactions and Delayed Neuronal Death: Role of Large Conductance, Ca2+ -activated K+ ChannelsMICROCIRCULATION, Issue 6 2010QUN WANG Please cite this paper as: Wang, Kalogeris, Wang, Jones and Korthuis (2010). Antecedent Ethanol Attenuates Cerebral Ischemia/Reperfusion-Induced Leukocyte-Endothelial Adhesive Interactions and Delayed Neuronal Death: Role of Large Conductance, Ca2+ -activated K+ Channels. Microcirculation17(6), 427,438. Abstract EtOH-PC reduces postischemic neuronal injury in response to cerebral (I/R). We examined the mechanism underlying this protective effect by determining (i) whether it was associated with a decrease in I/R-induced leukocyte-endothelial adhesive interactions in postcapillary venules, and (ii) whether the protective effects were mediated by activation of large conductance, calcium-activated potassium (BKCa) channels. Mice were administered ethanol by gavage or treated with the BKCa channel opener, NS1619, 24 hours prior to I/R with or without prior treatment with the BKCa channel blocker, PX. Both CCA were occluded for 20 minutes followed by two and three hours of reperfusion, and rolling (LR) and adherent (LA) leukocytes were quantified in pial venules using intravital microscopy. The extent of DND, apoptosis and glial activation in hippocampus were assessed four days after I/R. Compared with sham, I/R elicited increases in LR and LA in pial venules and DND and apoptosis as well as glial activation in the hippocampus. These effects were attenuated by EtOH-PC or antecedent NS1619 administration, and this protection was reversed by prior treatment with PX. Our results support a role for BKCa channel activation in the neuroprotective effects of EtOH-PC in cerebral I/R. [source] Loperamide mobilizes intracellular Ca2+ stores in insulin-secreting HIT-T15 cellsBRITISH JOURNAL OF PHARMACOLOGY, Issue 2 2003Li-Ping He We have investigated the effects of loperamide on intracellular Ca2+ stores and membrane K+ channels in insulin-secreting hamster insulinoma (HIT-T15) cells. In cell-attached patch-clamp mode, loperamide (3,250 ,M) activated large single-channel currents. The loperamide-activated currents were tentatively identified as Ca2+ -activated K+ channel (KCa) currents based on their single-channel conductance (145 pS), apparent reversal potential, and insensitivity to tolbutamide. Smaller single-channel currents with a conductance (32 pS) indicative of adenosine triphosphate-sensitive K+ channels (KATP channels) were also recorded, but were insensitive to loperamide. Surprisingly, the loperamide-activated currents persisted in the absence of extracellular Ca2+. Yet under these conditions, we still measured loperamide-induced Ca2+ increases. These effects are dose dependent. Loperamide had no effects in the inside-out patch configuration, suggesting that loperamide does not directly activate the channels with large conductance, but does so secondarily to release of Ca2+ from intracellular stores. Carbachol (100 ,M), an agonist of muscarinic receptors, which mediates IP3 -dependent intracellular Ca2+ release, enhanced the effects of loperamide on KCa channels. Both the putative KCa currents and Ca2+ signals induced by loperamide (with ,0' [Ca2+]o) were abolished when the intracellular Ca2+ stores had been emptied by pretreating the cells with either carbachol or thapsigargin, an endoplasmic reticulum Ca2+ -ATPase inhibitor that blocks reuptake of calcium. These data indicate that loperamide in insulin-secreting , -cells evokes intracellular Ca2+ release from IP3 -gated stores and activates membrane currents that appear to be carried by KCa, rather than KATP channels. British Journal of Pharmacology (2003) 139, 351,361. doi:10.1038/sj.bjp.0705263 [source] Brain-derived neurotrophic factor induces long-lasting Ca2+ -activated K+ currents in rat visual cortex neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2002Yoshito Mizoguchi Abstract Brain-derived neurotrophic factor (BDNF) increases postsynaptic intracellular Ca2+ and modulates synaptic transmission in various types of neurons. Ca2+ -activated K+ currents, opened mainly by intracellular Ca2+ elevation, contribute to hyperpolarization following action potentials and modulate synaptic transmission. We asked whether BDNF induces Ca2+ -activated K+ currents by postsynaptic elevation of intracellular Ca2+ in acutely dissociated visual cortex neurons of rats. Currents were analysed using the nystatin-perforated patch clamp technique and imaging of intracellular Ca2+ mobilization with fura-2. At a holding potential of ,50 mV, BDNF application (20 ng/mL) for 1,2 min induced an outward current (IBDNF-OUT; 80.0 ± 29.0 pA) lasting for more than 90 min without attenuation in every neuron tested. K252a (200 nm), an inhibitor of Trk receptor tyrosine kinase, and U73122 (3 ,m), a specific phospholipase C (PLC)-, inhibitor, suppressed IBDNF-OUT completely. IBDNF-OUT was both charybdotoxin- (600 nm) and apamin- (300 nm) sensitive, suggesting that this current was carried by Ca2+ -activated K+ channels. BAPTA-AM (150 ,m) gradually suppressed IBDNF-OUT. Fura-2 imaging revealed that a brief application of BDNF elicited a long-lasting elevation of intracellular Ca2+. These results show that BDNF induces long-lasting Ca2+ -activated K+ currents by sustained intracellular Ca2+ elevation in rat visual cortex neurons. While BDNF, likely acting through the Trk B receptor, was necessary for the induction of long-lasting Ca2+ -activated K+ currents via intracellular Ca2+ elevation, BDNF was not necessary for the maintenance of this current. [source] Ca2+ - and thromboxane-dependent distribution of MaxiK channels in cultured astrocytes: From microtubules to the plasma membraneGLIA, Issue 12 2009J. W. Ou Abstract Large-conductance, voltage- and Ca2+ -activated K+ channels (MaxiK) are broadly expressed ion channels minimally assembled by four pore-forming ,-subunits (MaxiK,) and typically observed as plasma membrane proteins in various cell types. In murine astrocyte primary cultures, we show that MaxiK, is predominantly confined to the microtubule network. Distinct microtubule distribution of MaxiK, was visualized by three independent labeling approaches: (1) MaxiK,-specific antibodies, (2) expressed EGFP-labeled MaxiK,, and (3) fluorophore-conjugated iberiotoxin, a specific MaxiK pore-blocker. This MaxiK, association with microtubules was further confirmed by in vitro His-tag pulldown, co-immunoprecipitation from brain lysates, and microtubule depolymerization experiments. Changes in intracellular Ca2+ elicited by general pharmacological agents, caffeine or thapsigargin, resulted in increased MaxiK, labeling at the plasma membrane. More notably, U46619, an analog of thromboxane A2 (TXA2), which triggers Ca2+ -release pathways and whose levels increase during cerebral hemorrhage/trauma, also elicits a similar increase in MaxiK, surface labeling. Whole-cell patch clamp recordings of U46619-stimulated cells develop a ,3-fold increase in current amplitude indicating that TXA2 stimulation results in the recruitment of additional, functional MaxiK channels to the surface membrane. While microtubules are largely absent in mature astrocytes, immunohistochemistry results in brain slices show that cortical astrocytes in the newborn mouse (P1) exhibit a robust expression of microtubules that significantly colocalize with MaxiK,. The results of this study provide the novel insight that suggests that Ca2+ released from intracellular stores may play a key role in regulating the traffic of intracellular, microtubule-associated MaxiK, stores to the plasma membrane of developing murine astrocytes. © 2009 Wiley-Liss, Inc. [source] Silencing of hSlo potassium channels in human osteosarcoma cells promotes tumorigenesisINTERNATIONAL JOURNAL OF CANCER, Issue 2 2008Béatrice Cambien Abstract Potassium channels, the most diverse superfamily of ion channels, have recently emerged as regulators of carcinogenesis, thus introducing possible new therapeutic strategies in the fight against cancer. In particular, the large conductance Ca2+ -activated K+ channels, often referred to as BK channels, are at the crossroads of several tumor-associated processes such as cell proliferation, survival, secretion and migration. Despite the high BK channel expression in osteosarcoma (OS), their function has not yet been investigated in this malignant bone pathology. Here, using stable RNA interference to reduce the expression of hSlo, the human pore-forming ,-subunit of the BK channel, in human Cal72 OS cells, we show that BK channels play a functional role in carcinogenesis. Our results reveal for the first time that BK channels exhibit antitumoral properties in OS in vivo and affect the tumor microenvironment through the modulation of both chemokine expression and leukocyte infiltration. © 2008 Wiley-Liss, Inc. [source] Sizing up Ethanol-Induced Plasticity: The Role of Small and Large Conductance Calcium-Activated Potassium ChannelsALCOHOLISM, Issue 7 2009Patrick J. Mulholland Small (SK) and large conductance (BK) Ca2+ -activated K+ channels contribute to action potential repolarization, shape dendritic Ca2+spikes and postsynaptic responses, modulate the release of hormones and neurotransmitters, and contribute to hippocampal-dependent synaptic plasticity. Over the last decade, SK and BK channels have emerged as important targets for the development of acute ethanol tolerance and for altering neuronal excitability following chronic ethanol consumption. In this mini-review, we discuss new evidence implicating SK and BK channels in ethanol tolerance and ethanol-associated homeostatic plasticity. Findings from recent reports demonstrate that chronic ethanol produces a reduction in the function of SK channels in VTA dopaminergic and CA1 pyramidal neurons. It is hypothesized that the reduction in SK channel function increases the propensity for burst firing in VTA neurons and increases the likelihood for aberrant hyperexcitability during ethanol withdrawal in hippocampus. There is also increasing evidence supporting the idea that ethanol sensitivity of native BK channel results from differences in BK subunit composition, the proteolipid microenvironment, and molecular determinants of the channel-forming subunit itself. Moreover, these molecular entities play a substantial role in controlling the temporal component of ethanol-associated neuroadaptations in BK channels. Taken together, these studies suggest that SK and BK channels contribute to ethanol tolerance and adaptive plasticity. [source] Membrane Hyperpolarization Is Not Required for Sustained Muscarinic Agonist-Induced Increases in Intracellular Ca2+ in Arteriolar Endothelial CellsMICROCIRCULATION, Issue 2 2005KENNETH D. COHEN ABSTRACT Objective: Hyperpolarization modulates Ca2+ influx during agonist stimulation in many endothelial cells, but the effects of hyperpolarization on Ca2+ influx in freshly isolated arteriolar endothelial cells are unknown. Therefore, the purpose of the present study was to characterize agonist-induced Ca2+ transients in freshly isolated arteriolar endothelial cells and to test the hypothesis that membrane hyperpolarization augments agonist-induced Ca2+ influx into these cells. Methods: Arterioles were removed from hamster cremaster muscles and arteriolar endothelial cells were enzymatically isolated. Endothelial cells were loaded with Fura 2-AM and the Fura 2 ratio measured photometrically as an index of intracellular Ca2+. The cells were then stimulated with the muscarinic, cholinergic agonist, methacholine, and the resulting Ca2+ transients were measured. Results: Methacholine (1 , M) increased the endothelial cell Fura 2 ratio from a baseline of 0.81 ± 0.02 to an initial peak of 1.17 ± 0.05 (n = 17) followed by a sustained plateau of 1.12 ± 0.07. The plateau phase of the Ca2+ transient was inhibited by removal of extracellular Ca2+ (n = 12, p < .05), or the nonselective cation channel blockers Gd3+ (30 , M; n = 7, p < .05) or La3+ (50 , M; n = 7, p < .05) without significant effect on the baseline or peak (p > .05). The initial peak of methacholine-induced Ca2+ transients was inhibited by the IP3 -receptor antagonist xestospongin D (10 , M, n = 5, p < .05). The methacholine-induced Ca2+ transients were accompanied by endothelial cell hyperpolarization of approximately 14,18 mV, as assessed by experiments using the potentiometric dye, di-8-ANEPPS as well as by patch-clamp experiments. However, inhibition of hyperpolarization by blockade of Ca2+ -activated K+ channels with charybdotoxin (100 nM) and apamin (100 nM) (n = 5), or exposure of endothelial cells to 80 or 145 mM KCl (both n = 7) had no effect on the plateau phase of methacholine-induced Ca2+ transients (p > .05). Conclusions: Freshly isolated arteriolar endothelial cells display agonist-induced Ca2+ transients. For the muscarinic agonist, methacholine, these Ca2+ transients result from release of Ca2+ from intracellular stores through IP3 receptors, followed by sustained influx of extracellular Ca2+. While these changes in intracellular Ca2+ are associated with endothelial cell hyperpolarization, the methacholine-induced, sustained increase in intracellular Ca2+ appears to be independent from this change in membrane potential. These data suggest that arteriolar endothelial cells may possess a novel Ca2+ influx pathway, or that the relationship between intracellular Ca2+ and Ca2+ influx is more complex than that observed in other endothelial cells. [source] Regulation of membrane potential and fluid secretion by Ca2+ -activated K+ channels in mouse submandibular glandsTHE JOURNAL OF PHYSIOLOGY, Issue 2 2007Victor G. Romanenko We have recently shown that the IK1 and maxi-K channels in parotid salivary gland acinar cells are encoded by the KCa3.1 and KCa1.1 genes, respectively, and in vivo stimulated parotid secretion is severely reduced in double-null mice. The current study tested whether submandibular acinar cell function also relies on these channels. We found that the K+ currents in submandibular acinar cells have the biophysical and pharmacological footprints of IK1 and maxi-K channels and their molecular identities were confirmed by the loss of these currents in KCa3.1- and KCa1.1 -null mice. Unexpectedly, the pilocarpine-stimulated in vivo fluid secretion from submandibular glands was essentially normal in double-null mice. This result and the possibility of side-effects of pilocarpine on the nervous system, led us to develop an ex vivo fluid secretion assay. Fluid secretion from the ex vivo assay was substantially (about 75%) reduced in animals with both K+ channel genes ablated , strongly suggesting systemic complications with the in vivo assay. Additional experiments focusing on the membrane potential in isolated submandibular acinar cells revealed mechanistic details underlying fluid secretion in K+ channel-deficient mice. The membrane potential of submandibular acinar cells from wild-type mice remained strongly hyperpolarized (,55 ± 2 mV) relative to the Cl, equilibrium potential (,24 mV) during muscarinic stimulation. Similar hyperpolarizations were observed in KCa3.1- and KCa1.1 -null mice (,51 ± 3 and ,48 ± 3 mV, respectively), consistent with the normal fluid secretion produced ex vivo. In contrast, acinar cells from double KCa3.1/KCa1.1 -null mice were only slightly hyperpolarized (,35 ± 2 mV) also consistent with the ex vivo (but not in vivo) results. Finally, we found that the modest hyperpolarization of cells from the double-null mice was maintained by the electrogenic Na+,K+ -ATPase. [source] The Effect of Korean Red Ginseng Extract on the Relaxation Response in Isolated Rabbit Vaginal Tissue and Its MechanismTHE JOURNAL OF SEXUAL MEDICINE, Issue 9 2008Sun-Ouck Kim MD ABSTRACT Introduction., Ginseng is an herbal medicine with a variety of biological activities. Aim., The purpose of this study was to investigate the effect of Korean red ginseng (KRG) extract on the relaxation response in isolated rabbit vaginal tissue and its mechanism as a potential therapeutic agent for female sexual dysfunction. Method., Strips of rabbit vagina were mounted in organ chambers to measure isometric tension. After the strips were precontracted with phenylephrine, the contractile responses to KRG extract (1,20 mg/mL), nitric oxide inhibitor (N[omega]-nitro-L-arginine methyl ester [L-NAME]), an inhibitor of soluble guanylate cyclase (methylene blue), an inhibitor of Ca2+ -activated K+ channels (tetraethylammonium [TEA]), and an adenosine triphosphate (ATP)-sensitive K+ channel blocker (glybenclamide) were examined. Main Outcome Measures., The relaxation of the vaginal tissue strip was assessed after treating KRG extract or other chemicals. Results., KRG (1,20 mg/mL) extract relaxed the vaginal tissue strip in a dose-dependent manner up to 85%. The relaxation effect was significantly inhibited by L-NAME (30 µM) and methylene blue (30 µM) (P < 0.05). In addition, KRG inhibited the contraction induced by depolarization with 10, 20, and 40 mM KCl. The KRG-induced relaxation effect was significantly inhibited by TEA (300 µM) (P < 0.05), and not by glybenclamide (30 µM). Conclusions., These data show that KRG extract has a relaxing effect on rabbit vaginal smooth muscle tissue. These effects might be mediated partly through the NO pathway and hyperpolarization via Ca2+ -activated K+ channels. Kim S-O, Kim MK, Lee H-S, Park JK, and Park K. The effect of Korean red ginseng extract on the relaxation response in isolated rabbit vaginal tissue and its mechanism. J Sex Med 2008;5:2079,2084. [source] Role of the cholinergic system and of apamin-sensitive Ca2+ -activated K+ channels on rabbit jejunum spontaneous activity and on the inhibitory effects of adrenoceptor agonistsAUTONOMIC & AUTACOID PHARMACOLOGY, Issue 2 2003L. Romanelli Summary 1 One reason why rabbit jejunum is suitable for studying the mechanisms underlying the actions of the various neurotransmitters and their interactions is its spontaneous motility. The main regulator of spontaneous motility is the cholinergic system. How the cholinergic system regulates the spontaneous activity in the rabbit jejunum and how it affects the inhibitory action of , - and , -adrenoceptor agonists remains unclear. 2 We studied the influence of the cholinergic system and apamin-sensitive Ca2+ -activated K+ channels on spontaneous contractions in the rabbit jejunum and on the inhibitory effects of,1 - and , -adrenoceptor agonists. 3 In naïve tissues, atropine (ATR, 7.4 × 10,8 m) and tetrodotoxin (8 × 10,8 m) almost completely inhibited , to a similar extent , the amplitude of spontaneous activity. Despite the presence of ATR or TDX, tissue contraction gradually recovered to about 50% of the baseline amplitude within 5,10 min. When ATR or TDX, respectively, were added to the TDX- or ATR-treated tissues, the recovered activity decreased weakly but significantly. After washout and a 45-min rest the contraction amplitude returned to baseline values. A further exposure to ATR or TDX reduced the contraction to a level significantly lower than the one obtained after TDX or ATR added 5 min after ATR or TDX, respectively. In preparations prestimulated for 10 min with acetylcholine (ACh), ATR abolished the TDX-resistant recovered spontaneous activity. 4 Adrenaline (ADR, 0.5,5 × 10,7 m) and phenylephrine (PHE, 1,10 × 10,7 m) inhibited tissue motility in naïve and in ATR- and in TDX-exposed preparations. But whereas in naïve preparations the ,1 -adrenoceptor antagonists completely antagonized inhibition induced by both drugs, in ATR- and TDX-exposed tissues they did so only partially for ADR. Agonist-induced inhibition had a rapid onset but rapidly faded; pendular movements took significantly longer to recover in ATR- and TDX-treated tissues than in naïve tissues. In tissues exposed for 2 min to ADR (0.5,5 × 10,7 m) or PHE (1,10 × 10,7 m), washout or addition of ,1 -adrenoceptor antagonists caused an immediate short-lasting increase in contraction amplitude. 5 Apamin (APAM, 5 × 10,9 m) caused a rapid and persistent increase in the amplitude of contractions. It also blocked the inhibitory responses to ADR and PHE, and removed washout-induced contractions. The APAM-induced increase in the contraction amplitude correlated with the increase obtained by washing out ADR or PHE. 6 Isoprenaline (at concentrations up to 2.8 × 10,7 m) produced no inhibitory response in naïve tissues, but it invariably blocked (at a concentration of 0.7 × 10,7 m) the recovered spontaneous activity (and sometimes depressed muscletone) in tissues exposed to ATR or TDX. Neither propranolol (3.4 × 10,7 m) nor APAM (5 × 10,9 m) counteracted these inhibitory effects. 7 These results indicate that spontaneous motility in the rabbit jejunum is predominantly mediated by neuronal release of ACh and by some other unidentified neuronal activity. Released ACh inhibits myogenic activity and strongly antagonizes , -adrenoceptor-induced APAM-insensitive inhibition but leaves ,1 agonist-induced APAM-sensitive inhibition unchanged. [source] Virodhamine relaxes the human pulmonary artery through the endothelial cannabinoid receptor and indirectly through a COX productBRITISH JOURNAL OF PHARMACOLOGY, Issue 7 2008H Koz, owska Background and purpose: The endocannabinoid virodhamine is a partial agonist at the cannabinoid CB1 receptor and a full agonist at the CB2 receptor, and relaxes rat mesenteric arteries through endothelial cannabinoid receptors. Its concentration in the periphery exceeds that of the endocannabinoid anandamide. Here, we examined the influence of virodhamine on the human pulmonary artery. Experimental approach: Isolated human pulmonary arteries were obtained during resections for lung carcinoma. Vasorelaxant effects of virodhamine were examined on endothelium-intact vessels precontracted with 5-HT or KCl. Key results: Virodhamine, unlike WIN 55,212-2, relaxed 5-HT-precontracted vessels concentration dependently. The effect of virodhamine was reduced by endothelium denudation, two antagonists of the endothelial cannabinoid receptor, cannabidiol and O-1918, and a high concentration of the CB1 receptor antagonist rimonabant (5 ,M), but only slightly attenuated by the NOS inhibitor L -NAME and not affected by a lower concentration of rimonabant (100 nM) or by the CB2 and vanilloid receptor antagonists SR 144528 and capsazepine, respectively. The COX inhibitor indomethacin and the fatty acid amide hydrolase inhibitor URB597 and combined administration of selective blockers of small (apamin) and intermediate and large (charybdotoxin) conductance Ca2+ -activated K+ channels attenuated virodhamine-induced relaxation. The vasorelaxant potency of virodhamine was lower in KCl- than in 5-HT-precontracted preparations. Conclusions and implications: Virodhamine relaxes the human pulmonary artery through the putative endothelial cannabinoid receptor and indirectly through a COX-derived vasorelaxant prostanoid formed from the virodhamine metabolite, arachidonic acid. One or both of these mechanisms may stimulate vasorelaxant Ca2+ -activated K+ channels. British Journal of Pharmacology (2008) 155, 1034,1042; doi:10.1038/bjp.2008.371; published online 22 September 2008 [source] Theophylline attenuates Ca2+ sensitivity and modulates BK channels in porcine tracheal smooth muscleBRITISH JOURNAL OF PHARMACOLOGY, Issue 5 2003Shinji Ise Theophylline, a nonselective phosphodiesterase inhibitor, has long been regarded as a major bronchodilator in the treatment of human asthma. Using front-surface fluorometry with fura-2 and , -toxin permeabilization, the effects of theophylline on intracellular Ca2+ concentration ([Ca2+]i), tension development and Ca2+ sensitivity of the contractile apparatus were investigated in porcine tracheal smooth muscle strips. Application of theophylline induced a relaxation without a significant decrease in [Ca2+]i when strips were precontracted by 40 mM K+ depolarization, while theophylline significantly decreased both [Ca2+]i and tension induced by carbachol. The effects of theophylline on the increases in [Ca2+]i and tension induced by carbachol were significantly inhibited by iberiotoxin, an inhibitor of large-conductance Ca2+ -activated K+ channels. In the absence of extracellular Ca2+, theophylline significantly attenuated carbachol-induced transient increases in tension development, while it did not affect carbachol-induced transient increase in [Ca2+]i. The [Ca2+]i,force relationship, which was determined by cumulative applications of extracellular Ca2+ (0,5 mM) during 40 mM K+ depolarization, was significantly shifted to the right by theophylline. In , -toxin permeabilized strips, theophylline significantly increased the EC50 value of [Ca2+]i for contraction and enhanced the effect of cAMP, but not of cGMP. These results indicate that theophylline induces relaxation of the porcine tracheal smooth muscle through an activation of BK channels, and a resultant decrease in [Ca2+]i and an attenuation of Ca2+ sensitivity, presumably through the action of cAMP. British Journal of Pharmacology (2003) 140, 939,947. doi:10.1038/sj.bjp.0705508 [source] Calcium dobesilate potentiates endothelium-derived hyperpolarizing factor-mediated relaxation of human penile resistance arteriesBRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2003Javier Angulo We have evaluated the participation of endothelium-derived hyperpolarizing factor (EDHF) in the endothelium-dependent relaxation of isolated human penile resistance arteries (HPRA) and human corpus cavernosum (HCC) strips. In addition, the effect of the angioprotective agent, calcium dobesilate (DOBE), on the endothelium-dependent relaxation of these tissues was investigated. Combined inhibition of nitric oxide synthase (NOS) and cyclooxygenase (COX) nearly abolished the endothelium-dependent relaxation to acetylcholine (ACh) in HCC, while 60% relaxation of HPRA was observed under these conditions. Endothelium-dependent relaxation of HPRA resistant to NOS and COX inhibition was prevented by raising the extracellular concentration of K+ (35 mM) or by blocking Ca2+ -activated K+ channels, with apamin (APA; 100 nM) and charybdotoxin (CTX; 100 nM), suggesting the involvement of EDHF in these responses. Endothelium-dependent relaxation to ACh was markedly enhanced by DOBE (10 ,M) in HPRA but not in HCC. The potentiating effects of DOBE on ACh-induced responses in HPRA, remained after NOS and COX inhibition, were reduced by inhibition of cytochrome P450 oxygenase with miconazole (0.3 mM) and were abolished by high K+ or a combination of APA and CTX. In vivo, DOBE (10 mg kg,1 i.v.) significantly potentiated the erectile responses to cavernosal nerve stimulation in male rats. EDHF plays an important role in the endothelium-dependent relaxation of HPRA but not in HCC. DOBE significantly improves endothelium-dependent relaxation of HPRA mediated by EDHF and potentiates erectile responses in vivo. Thus, EDHF becomes a new therapeutic target for the treatment of erectile dysfunction (ED) and DOBE could be considered a candidate for oral therapy for ED. British Journal of Pharmacology (2003) 139, 854,862. doi:10.1038/sj.bjp.0705293 [source] Anandamide-induced relaxation of sheep coronary arteries: the role of the vascular endothelium, arachidonic acid metabolites and potassium channelsBRITISH JOURNAL OF PHARMACOLOGY, Issue 5 2001J Grainger The effects of the endocannabinoid, anandamide, and its metabolically stable analogue, methanandamide, on induced tone were examined in sheep coronary artery rings in vitro. In endothelium-intact rings precontracted to the thromboxane A2 mimetic, U46619, anandamide (0.01 , 30 ,M) induced slowly developing concentration-dependent relaxations (pEC50 [negative log of EC50]=6.1±0.1; Rmax [maximum response]=81±4%). Endothelium denudation caused a 10 fold rightward shift of the anandamide concentration-relaxation curve without modifying Rmax. Methanandamide was without effect on U46619-induced tone. The anandamide-induced relaxation was unaffected by the cannabinoid receptor antagonist, SR 141716A (3 ,M), the vanilloid receptor antagonist, capsazepine (3 and 10 ,M) or the nitric oxide synthase inhibitor, L -NAME (100 ,M). The cyclo-oxygenase inhibitor, indomethacin (3 and 10 ,M) and the anandamide amidohydrolase inhibitor, PMSF (70 and 200 ,M), markedly attenuated the anandamide response. The anandamide transport inhibitor, AM 404 (10 and 30 ,M), shifted the anandamide concentration-response curve to the right. Precontraction of endothelium-intact rings with 25 mM KCl attenuated the anandamide-induced relaxations (Rmax=7±7%), as did K+ channel blockade with tetraethylammonium (TEA; 3 ,M) or iberiotoxin (100 nM). Blockade of small conductance, Ca2+ -activated K+ channels, delayed rectifier K+ channels, KATP channels or inward rectifier K+ channels was without effect. These data suggest that the relaxant effects of anandamide in sheep coronary arteries are mediated in part via the endothelium and result from the cellular uptake and conversion of anandamide to a vasodilatory prostanoid. This, in turn, causes vasorelaxation, in part, by opening potassium channels. British Journal of Pharmacology (2001) 134, 1003,1012; doi:10.1038/sj.bjp.0704340 [source] Inhibition of neuroeffector transmission in human vas deferens by sildenafilBRITISH JOURNAL OF PHARMACOLOGY, Issue 5 2000Pascual Medina Sildenafil (0.1,30 ,M), a cyclic GMP phosphodiesterase 5 (PDE 5) inhibitor, induced inhibition of electrically evoked contractions of ring segments of human vas deferens from 34 vasectomies. Zaprinast (0.1,100 ,M), another PDE 5 inhibitor, and the nitric oxide (NO) donor sodium nitroprusside (SNP) (0.1,100 ,M) had no effect on neurogenic contractions. The inhibition induced by sildenafil was not modified by the inhibitor of guanylate cyclase 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ) (1,30 ,M) but it was abolished by the K+ channel blockers tetraethylammonium (TEA, 1 mM), iberiotoxin (0.1 ,M) and charybdotoxin (0.1 ,M). Sildenafil, zaprinast and SNP did not affect the contractions induced by noradrenaline. SNP (10 ,M) caused elevation of cyclic GMP levels that was potentiated by sildenafil (10 ,M) and zaprinast (100 ,M). ODQ (10 ,M) inhibited the increase in cyclic GMP. Sildenafil inhibits adrenergic neurotransmission in human vas deferens. The inhibition is not related to accumulation of cyclic GMP but is probably due to activation of prejunctional large-conductance Ca2+ -activated K+ channels. British Journal of Pharmacology (2000) 131, 871,874; doi:10.1038/sj.bjp.0703657 [source] The pharmacology of hSK1 Ca2+ -activated K+ channels expressed in mammalian cell linesBRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2000M Shah The pharmacology of hSK1, a small conductance calcium-activated potassium channel, was studied in mammalian cell lines (HEK293 and COS-7). In these cell types, hSK1 forms an apamin-sensitive channel with an IC50 for apamin of 8 nM in HEK293 cells and 12 nM in COS-7 cells. The currents in HEK293 cells were also sensitive to tubocurarine (IC50=23 ,M), dequalinium (IC50=0.4 ,M), and the novel dequalinium analogue, UCL1848 (IC50=1 nM). These results are very different from the pharmacology of hSK1 channels expressed in Xenopus oocytes and suggest the properties of the channel may depend on the expression system. Our findings also raise questions about the role of SK1 channels in generating the apamin-insensitive slow afterhyperpolarization observed in central neurones. British Journal of Pharmacology (2000) 129, 627,630; doi:10.1038/sj.bjp.0703111 [source] |