Convex Optimization (convex + optimization)

Distribution by Scientific Domains

Terms modified by Convex Optimization

  • convex optimization problem

  • Selected Abstracts


    Robust Analysis of Discrete-Time Lur'e Systems with Slope Restrictions Using Convex Optimization

    ASIAN JOURNAL OF CONTROL, Issue 2 2002
    David Banjerdpongchai
    ABSTRACT This paper considers robust stability and robust performance analysis for discrete-time linear systems subject to nonlinear uncertainty. The uncertainty set is described by memoryless, time-invariant, sector bounded, and slope restricted nonlinearities. We first give an overview of the absolute stability criterion based on the Lur'e-Postkinov Lyapunov function, along with a frequency domain condition. Subsequently, we derive sufficient conditions to compute the upper bounds of the worst case H2 and worst case H, performance. For both robust stability testing and robust performance computation, we show that these sufficient conditions can be readily and efficiently determined by performing convex optimization over linear matrix inequalities. [source]


    Signal-noise support vector model of a microwave transistor

    INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, Issue 4 2007
    Filiz Güne
    Abstract In this work, a support vector machines (SVM) model for the small-signal and noise behaviors of a microwave transistor is presented and compared with its artificial neural network (ANN) model. Convex optimization and generalization properties of SVM are applied to the black-box modeling of a microwave transistor. It has been shown that SVM has a high potential of accurate and efficient device modeling. This is verified by giving a worked example as compared with ANN which is another commonly used modeling technique. It can be concluded that hereafter SVM modeling is a strongly competitive approach against ANN modeling. © 2007 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2007. [source]


    MATLAB based GUIs for linear controller design via convex optimization

    COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, Issue 1 2003
    Wathanyoo Khaisongkram
    Abstract Owing to the current evolution of computational tools, a complicated parameter optimization problem could be effectively solved by a computer. In this paper, a CAD tool for multi-objective controller design based on MATLAB program is developed. In addition, we construct simple GUIs (using GUIDE tools within MATLAB) to provide a visual approach in specifying the constraints. The linear controller design problem can be cast as the convex optimization subjected to time domain and frequency domain constraints. This optimization problem is efficiently solved within a finite dimensional subspace by a practical ellipsoid algorithm. In the design process, we include a model reduction of the resulting controller to speed up the computational efficiency. Finally, a numerical example shows the capability of the program to design multi-objective controller for a one-link flexible robot arm. © 2003 Wiley Periodicals, Inc. Comput Appl Eng Educ 11: 13,24, 2003; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/cae.10035 [source]


    A new finite sum inequality approach to delay-dependent H, control of discrete-time systems with time-varying delay

    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 6 2008
    Xian-Ming Zhang
    Abstract This paper deals with delay-dependent H, control for discrete-time systems with time-varying delay. A new finite sum inequality is first established to derive a delay-dependent condition, under which the resulting closed-loop system via a state feedback is asymptotically stable with a prescribed H, noise attenuation level. Then, an iterative algorithm involving convex optimization is proposed to obtain a suboptimal H, controller. Finally, two numerical examples are given to show the effectiveness of the proposed method. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    A sliding mode control approach for systems subjected to a norm-bounded uncertainty

    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 4 2007
    Anis Sellami
    Abstract This paper proposes a design approach of continuous sliding mode control of uncertain systems, the uncertainty being norm bounded. The two steps of the design methodology are investigated. The existence step, in which we choose the sliding surface that gives good behaviour during the sliding mode, is formulated as a pole assignment of linear uncertain system in a sector through convex optimization. The solution to this problem is therefore numerically tractable via linear matrix inequalities (LMI) optimization. In the reaching step, we propose a continuous nonlinear control strategy ensuring a bounded motion about the ideal sliding mode, thus approximating the ideal dynamic behaviour in the presence of uncertainty. Finally, the validity and the applicability of this approach are illustrated by a flight stabilization benchmark example. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    GENERALIZED QUADRATIC STABILIZATION FOR DISCRETE-TIME SINGULAR SYSTEMS WITH TIME-DELAY AND NONLINEAR PERTURBATION

    ASIAN JOURNAL OF CONTROL, Issue 3 2005
    Guoping Lu
    ABSTRACT This paper discusses a generalized quadratic stabilization problem for a class of discrete-time singular systems with time-delay and nonlinear perturbation (DSSDP), which the satisfies Lipschitz condition. By means of the S-procedure approach, necessary and sufficient conditions are presented via a matrix inequality such that the control system is generalized quadratically stabilizable. An explicit expression of the static state feedback controllers is obtained via some free choices of parameters. It is shown in this paper that generalized quadratic stability also implies exponential stability for linear discrete-time singular systems or more generally, DSSDP. In addition, this new approach for discrete singular systems (DSS) is developed in order to cast the problem as a convex optimization involving linear matrix inequalities (LMIs), such that the controller can stabilize the overall system. This approach provides generalized quadratic stabilization for uncertain DSS and also extends the existing robust stabilization results for non-singular discrete systems with perturbation. The approach is illustrated here by means of numerical examples. [source]


    Robust Analysis of Discrete-Time Lur'e Systems with Slope Restrictions Using Convex Optimization

    ASIAN JOURNAL OF CONTROL, Issue 2 2002
    David Banjerdpongchai
    ABSTRACT This paper considers robust stability and robust performance analysis for discrete-time linear systems subject to nonlinear uncertainty. The uncertainty set is described by memoryless, time-invariant, sector bounded, and slope restricted nonlinearities. We first give an overview of the absolute stability criterion based on the Lur'e-Postkinov Lyapunov function, along with a frequency domain condition. Subsequently, we derive sufficient conditions to compute the upper bounds of the worst case H2 and worst case H, performance. For both robust stability testing and robust performance computation, we show that these sufficient conditions can be readily and efficiently determined by performing convex optimization over linear matrix inequalities. [source]