Home About us Contact | |||
Controlled-release Systems (controlled-release + system)
Selected AbstractsSmart Hydrogels Co-switched by Hydrogen Bonds and ,,, Stacking for Continuously Regulated Controlled-Release SystemADVANCED FUNCTIONAL MATERIALS, Issue 4 2010Fang Li Abstract A series of hydrogels with continuously regulatable release behavior can be achieved by incorporating hydrogen bonding and ,,, stacking co-switches in polymers. A poly(nitrophenyl methacrylate- co -methacrylic acid) hydrogel (NPMAAHG) for control over drug release is fabricated by copolymerizing 4-nitrophenyl methacrylate and methacrylic acid using ethylene glycol dimethacrylate as a crosslinker. The carboxylic acid groups and nitrylphenyl groups form hydrogen bonds and ,,, stacking interactions, respectively, which act as switches to control the release of guest molecules from the polymers. As revealed by the simulated gastrointestinal tract drug release experiments, the as-synthesized NPMAAHG hydrogels can be regulated to release only 4.7% of drugs after 3,h in a simulated stomach and nearly 92.6% within 43,h in the whole digestive tract. The relation between the release kinetics and structures and the mechanism of the smart release control are analyzed in terms of diffusion exponent, swelling interface number, drug diffusion coefficient, and velocity of the swelling interface in detail. The results reveal that the release of guest molecules from the hydrogels can be continuously regulated for systemic administration by controlling the ratio of the hydrophilic hydrogen bonds and the hydrophobic ,,, stacking switches. [source] Controlled-release systems based on the intercalation of polymeric metribuzin onto montmorilloniteJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 14 2002Ahmed Rehab Abstract A series of polymer,clay composites carrying metribuzin as herbicide moieties were prepared. Linear copolymers containing metribuzin via an imide linkage were prepared by the free-radical polymerization of metribuzin monomer (N,N -diacryloyl metribuzin) with different comonomers. The intercalation of the copolymers onto montmorillonite through a cationic exchange process was carried out and yielded metribuzin composite products. The prepared materials were characterized with a wide variety of analytical techniques, including gel permeation chromatography, NMR, IR, elemental microanalysis, gravimetric analysis (calcination), and swelling measurements. The release rates for the prepared materials were investigated in media of different pHs with an ultraviolet spectrophotometer. Also, these compounds were studied for the control of herb growth. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2513,2525, 2002 [source] Permeation of urea through various polyurethane membranesPEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 11 2009Atsushi Watanabe Abstract BACKGROUND: Controlled-release systems using polymer membranes are very important in agriculture for labour-saving and effective delivery of pesticides and other agents. Polymer-coated granules are one of the most useful formulations, and a study of the factors for polymer design is necessary to achieve various release patterns. A permeation study using plain membranes was carried out in order to clarify parameters, and the results were compared with the release from polymer-coated granules. RESULTS: The permeation coefficient of urea through a plain polyurethane membrane decreased significantly as the urethane and alkyl side chain content increased. The glass transition temperature and crosslink density of the polyurethanes hardly influenced its permeability. The release rate from polyurethane-coated granules was also reduced by alkyl side chains. However, it was faster than that through a plain membrane because of capsule expansion by continuous water penetration and structural changes in the membrane. CONCLUSION: The release rate of urea through a polyurethane plain membrane and from polyurethane-coated granules can be controlled by changing the chemical properties of the membrane. In addition, physical properties such as the glass transition temperature Tg or crosslink density should be considered to assess the release profile from polyurethane-coated granules. Copyright © 2009 Society of Chemical Industry [source] Synthesis, characterization and application of poly[(1-vinyl-2-pyrrolidone)- co -(2-hydroxyethyl methacrylate)] as controlled-release polymeric system for 2,4-dichlorophenoxyacetic chloride using an ultrafiltration techniquePOLYMER INTERNATIONAL, Issue 7 2008Guadalupe del C Pizarro Abstract BACKGROUND: Polymers supporting chemicals used in agriculture have recently been developed to overcome the serious environmental problems of conventional agrochemicals. The success of these formulations is based on a suitable choice of polymer support. Degradable polymeric hydrogels are of particular interest. The gradual release of the bioactive agent can be achieved by hydrolytic or enzymatic cleavage of the linking bond. RESULTS: In this context, poly[(1-vinyl-2-pyrrolidone)- co -(2-hydroxyethyl methacrylate)] [poly(NVP- co -HEMA)] has been used as a bioactive carrier reagent. Herein, we report a controlled-release system with the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) using an ultrafiltration system. Hydrolysis was studied by testing the release at various pH values. A high release with poly(NVP- co -HEMA),2,4-D was observed at pH = 7 and 10 after two days (Z = 2). The release percentage of copolymer,herbicide increased at pH = 10. It showed release values between 79.0 and 94.5%. Poly(NVP- co -HEMA),herbicide can release a bioactive compound in aqueous solution at pH = 3, 7 and 10. CONCLUSION: Based on the results of homogeneous hydrolysis, it is argued that the herbicide release rate depends on the pH of the reaction environment. This functional polymer could be employed as a biodegradable material for applications in agrichemical release. Copyright © 2008 Society of Chemical Industry [source] Controlled Release of Perfumery Alcohols by Neighboring-Group Participation.HELVETICA CHIMICA ACTA, Issue 8 20032-(Hydroxymethyl)-, 2-Carbamoylbenzoates, Comparison of the Rate Constants for the Alkaline Hydrolysis of 2-Acyl- A series of 2-acylbenzoates 1 and 2, 2-(hydroxymethyl)benzoates 3, 2-carbamoylbenzoates 4,6, as well as the carbamoyl esters 7 or 8 of maleate or succinate, respectively (see Fig.,2), were prepared in a few reaction steps, and the potential use of these compounds as chemical delivery systems for the controlled release of primary, secondary, and tertiary fragrance alcohols was investigated. The rate constants for the neighboring-group-assisted alkaline ester hydrolysis were determined by anal. HPLC in buffered H2O/MeCN solution at different pH (Table,1). The rates of hydrolysis were found to depend on the structure of the alcohol, together with the precursor skeleton and the structure of the neighboring nucleophile that attacks the ester function. Primary alcohols were released more rapidly than secondary and tertiary alcohols, and benzoates of allylic primary alcohols (e.g., geraniol) were hydrolyzed 2,4 times faster than their homologous saturated alcohols (e.g., citronellol). For the same leaving alcohol, 2-[(ethylamino)carbonyl]benzoates cyclized faster than the corresponding 2-(hydroxymethyl)benzoates, and much faster than their 2-formyl and 2-acetyl analogues (see, e.g., Fig.,4). Within the carbamoyl ester series, 2-[(ethylamino)carbonyl]benzoates were found to have the highest rate constants for the alkaline ester hydrolysis, followed by unsubstituted 2-(aminocarbonyl)benzoates, or the corresponding isopropyl derivatives. To rationalize the influence of the different structural changes on the hydrolysis kinetics, the experimental data obtained for the 2-[(alkylamino)carbonyl]benzoates were compared with the results of density-functional computer simulations (Table,2 and Scheme,4). Based on a preliminary semi-empirical conformation analysis, density-functional calculations at the B3LYP/6-31G** level were carried out for the starting precursor molecules, several reaction intermediates, and the cyclized phthalimides. For the same precursor skeleton, these simple calculations were found to model the experimental data correctly. With an understanding of the influence of structural parameters on the rate constants obtained in this work, it is now possible to influence the rates of hydrolysis over several orders of magnitude, to design tailor-made precursors for a large variety of fragrance alcohols, and to predict their efficiency as controlled-release systems in practical applications. [source] Enzyme-Triggered and Self-Cleaving Fragrant Alcohol PrecursorsCHEMISTRY & BIODIVERSITY, Issue 6 2008Felix Flachsmann Abstract The high volatility and water solubility of many natural perfumery alcohols leads to their rapid loss in fabric-care and personal-care applications. A dramatically enhanced substantivity is achieved by the use of fragrance precursors as controlled-release systems. In the first part of this article, we present multi-odorant precursors, in which the enzymatic cleavage of esters or carbonates of fragrant alcohols triggers subsequent steps leading to the release of fragrant ketones, lactones, and additional fragrant alcohols. In the second part, a study on oligocarbonates of fragrant alcohols is presented. Therein, the outstanding enzyme-independent performance of gluconolactone oligocarbonate 27 for the long-lasting release of (Z)-hex-3-en-1-ol is highlighted. We show that these polyfunctional compounds undergo complex rearrangements and intramolecular substitution reactions which lead to the observed release kinetics. [source] |