Control siRNA (control + sirna)

Distribution by Scientific Domains


Selected Abstracts


EBAG9 is a tumor-promoting and prognostic factor for bladder cancer

INTERNATIONAL JOURNAL OF CANCER, Issue 4 2009
Jinpei Kumagai
Abstract Upregulation of EBAG9 expression has been observed in several malignant tumors such as advanced breast and prostate cancers, indicating that EBAG9 may contribute to tumor proliferation. In the present study, we assess the role of EBAG9 in bladder cancer. We generated human bladder cancer EJ cells stably expressing FLAG-tagged EBAG9 (EJ-EBAG9) or empty vector (EJ-vector), and investigated whether EBAG9 overexpression modulates cell growth and migration in vitro as well as the in vivo tumor formation of EJ transfectants in xenograft models of BALB/c nude mice. EBAG9 overexpression promoted EJ cell migration, while the effect of EBAG9 to cultured cell growth was rather minimal. Tumorigenic experiments in nude mice showed that the size of EJ-EBAG9-derived tumors was significantly larger than EJ-vector-derived tumors. Loss-of-function study for EBAG9 using small interfering RNA (siRNA) in xenografts with parental EJ cells showed that the intra-tumoral injection of EBAG9 siRNA markedly reduced the EJ tumor formation compared with control siRNA. Furthermore, immunohistochemical study for EBAG9 expression was performed in 60 pathological bladder cancer specimens. Intense and diffuse cytoplasmic immunostaining was observed in 45% of the bladder cancer cases. Positive EBAG9 immunoreactivity was closely correlated with poor prognosis of the patients (p = 0.0001) and it was an independent prognostic predictor for disease-specific survival in multivariate analysis (p = 0.003). Our results indicate that EBAG9 would be a crucial regulator of tumor progression and a potential prognostic marker for bladder cancer. © 2008 Wiley-Liss, Inc. [source]


bcl-2-specific siRNAs restore Gemcitabine sensitivity in human pancreatic cancer cells

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 2 2007
Kinya Okamoto
Abstract Gemcitabine has been shown to ameliorate disease related symptoms and to prolong overall survival in pancreatic cancer.Yet, resistance to Gemcitabine is commonly observed in this tumour entity and has been linked to increased expression of anti-apoptotic bcl-2. We therefore investigated if and to what extend silencing of bcl-2 by specific siRNAs (siBCL2) might enhance Gemcitabine effects in human pancreatic carcinoma cells. siBCL2 was transfected into the pancreatic cancer cell line YAP C alone and 72 hrs before co-incubation with different concentrations of Gemcitabine. Total protein and RNA were extracted for Western-blot analysis and quantitative polymerase chain reaction. Pancreatic cancer xenografts in male nude mice were treated intraperitoneally with siBCL2 alone, Gemcitabine and control siRNA or Gemcitabine and siBCL2 for 21 days. Combination of both methods lead to a synergistic induction of apoptosis at otherwise ineffective concentrations of Gemcitabine. Tumour growth suppression was also potentiated by the combined treatment with siBCL2 and Gemcitabine in vivo and lead to increased TUNEL positivity. In contrast, non-transformed human foreskin fibroblasts showed only minor responses to this treatment. Our results demonstrate that siRNA-mediated silencing of anti-apoptotic bcl-2 enhances chemotherapy sensitivity in human pancreatic cancer cells in vitro and might lead to improved therapy responses in advanced stages of this disease. [source]


Rapid Action of Oestrogen in Luteinising Hormone-Releasing Hormone Neurones: The Role of GPR30

JOURNAL OF NEUROENDOCRINOLOGY, Issue 4 2009
E. Terasawa
Previously, we have shown that 17,-oestradiol (E2) induces an increase in firing activity and modifies the pattern of intracellular calcium ([Ca2+]i) oscillations with a latency < 1 min in primate luteinising hormone-releasing hormone (LHRH) neurones. A recent study also indicates that E2, the nuclear membrane impermeable oestrogen, oestrogen-dendrimer conjugate, and the plasma membrane impermeable oestrogen, E2 -BSA conjugate, all similarly stimulated LHRH release within 10 min of exposure in primate LHRH neurones, indicating that the rapid action of E2 is caused by membrane signalling. The results from a series of studies further suggest that the rapid action of E2 in primate LHRH neurones appears to be mediated by GPR30. Although the oestrogen receptor antagonist, ICI 182, 780, neither blocked the E2 -induced LHRH release nor the E2 -induced changes in [Ca2+]i oscillations, E2 application to cells treated with pertussis toxin failed to result in these changes in primate LHRH neurones. Moreover, knockdown of GPR30 in primate LHRH neurones by transfection with human small interference RNA for GPR30 completely abrogated the E2 -induced changes in [Ca2+]i oscillations, whereas transfection with control siRNA did not. Finally, the GPR30 agonist, G1, resulted in changes in [Ca2+]i oscillations similar to those observed with E2. In this review, we discuss the possible role of G-protein coupled receptors in the rapid action of oestrogen in neuronal cells. [source]


Association between activation of atypical NF-,B1 p105 signaling pathway and nuclear ,-catenin accumulation in colorectal carcinoma

MOLECULAR CARCINOGENESIS, Issue 2 2010
Johannes C. Lauscher
Abstract Recent studies have demonstrated that increased expression of coding region determinant-binding protein (CRD-BP) in response to ,-catenin signaling leads to the stabilization of ,-TrCP1, a substrate-specific component of SCF E3 ubiquitin ligase complex, resulting in an accelerated degradation of I,B, and activation of canonical nuclear factor-,B (NF-,B) pathway. Here, we show that the noncanonical NF-,B1 p105 pathway is constitutively activated in colorectal carcinoma specimens, being particularly associated with ,-catenin-mediated increased expression of CRD-BP and ,-TrCP1. In the carcinoma tissues exhibiting high levels of nuclear ,-catenin the phospho-p105 levels were increased and total p105 amounts were decreased in comparison to that of normal tissue indicating an activation of this NF-,B pathway. Knockdown of CRD-BP in colorectal cancer cell line SW620 resulted in significantly higher basal levels of both NF-,B inhibitory proteins, p105 and I,B,. Furthermore decreased NF-,B binding activity was observed in CRD-BP siRNA-transfected SW620 cells as compared with those transfected with control siRNA. Altogether, our findings suggest that activation of NF-,B1 p105 signaling in colorectal carcinoma might be attributed to ,-catenin-mediated induction of CRD-BP and ,-TrCP1. © 2009 Wiley-Liss, Inc. [source]


Efficient suppression of murine arthritis by combined anticytokine small interfering RNA lipoplexes

ARTHRITIS & RHEUMATISM, Issue 8 2008
Maroun Khoury
Objective Blocking tumor necrosis factor (TNF) effectively inhibits inflammation and joint damage in rheumatoid arthritis (RA), but 40% of RA patients respond only transiently or not at all to the current anti-TNF biotherapies. The purpose of this study was to develop an alternative targeted therapy for this subgroup of RA patients. As proof of concept, we tested the efficiency of an RNA interference (RNAi),based intervention that targets proinflammatory cytokines in suppressing murine collagen-induced arthritis (CIA). Methods Two synthetic short interfering RNA (siRNA) sequences were designed for each of the proinflammatory cytokines interleukin-1 (IL-1), IL-6, and IL-18. Their silencing specificity was assessed according to lipopolysaccharide-induced messenger RNA expression in J774.1 mouse macrophages as compared with control siRNA. For in vivo administration, siRNA were formulated as lipoplexes with the RPR209120/DOPE liposome and a carrier DNA and were injected intravenously (0.5 mg/kg) into DBA/1 mice with CIA. Results Weekly injections of anti,IL-1, anti,IL-6, or anti,IL-18 siRNA-based lipoplexes significantly reduced the incidence and severity of arthritis, abrogating joint swelling and destruction of cartilage and bone, both in the preventative and the curative settings. The most striking therapeutic effect was observed when the 3 siRNA were delivered in combination. The siRNA lipoplex cocktail reduced all pathologic features of RA, including inflammation, joint destruction, and the Th1 response, and overall parameters of RA were improved as compared with anti-TNF siRNA lipoplex,based treatment. Conclusion Our results present a novel option for in vivo RNAi-based antiinflammatory immunotherapy. Our findings indicate that intravenous administration of a lipoplex cocktail containing several anticytokine siRNA is a promising novel antiinflammatory therapy for RA, as well as a useful and simple tool for understanding the pathophysiology of RA and for evaluating new therapeutic candidates. [source]


Down regulation of BRCA2 causes radio-sensitization of human tumor cells in vitro and in vivo

CANCER SCIENCE, Issue 4 2008
Dong Yu
In order to study the role of BRCA2 protein in homologous recombination repair and radio-sensitization, we utilized RNA interference strategy in vitro and in vivo with human tumor cells. HeLa cells transfected with small-interfering BRCA2 NA (BRCA2 siRNA) (Qiagen) as well as negative-control siRNA for 48 h were irradiated, and several critical end points were examined. The radiation cell survival level was significantly reduced in HeLa cells with BRCA2 siRNA when compared with mock- or negative-control siRNA transfected cells. DNA double strand break repair as measured by constant field gel-electrophoresis showed a clear inhibition in cells with BRCA2 siRNA, while little inhibition was observed in cells with negative control siRNA. Our immuno-staining experiments revealed a significant delay in Rad51 foci formation in cells with BRCA2 siRNA when compared with the control populations. However, none of the non-homologous end joining proteins nor the phosphorylation of DNA-dependent protein kinase catalytic subunit was affected in cells transfected with BRCA2 siRNA. In addition, the combined treatment with radiation and BRCA2 siRNA in xenograft model with HeLa cells showed an efficient inhibition of in vivo tumor growth. Our results demonstrate down-regulation of BRCA2 leads to radio-sensitization mainly through the inhibition of homologous recombination repair type double-strand break repair; a possibility of using BRCA2 siRNA as an effective radiosensitizer in tumor radiotherapy may arise. (Cancer Sci 2008; 99: 810,815) [source]