Home About us Contact | |||
Control Mesocosms (control + mesocosm)
Selected AbstractsDoes Facilitation of Faunal Recruitment Benefit Ecosystem Restoration?RESTORATION ECOLOGY, Issue 4 2002An Experimental Study of Invertebrate Assemblages in Wetland Mesocosms Abstract We used wetland mesocosms (1) to experimentally assess whether inoculating a restored wetland site with vegetation/sediment plugs from a natural wetland would alter the development of invertebrate communities relative to unaided controls and (2) to determine if stocking of a poor invertebrate colonizer could further modify community development beyond that due to simple inoculation. After filling mesocosms with soil from a drained and cultivated former wetland and restoring comparable hydrology, mesocosms were randomly assigned to one of three treatments: control (a reference for unaided community development), inoculated (received three vegetation/sediment cores from a natural wetland), and stocked + inoculated (received three cores and were stocked with a poorly dispersing invertebrate group,gastropods). All mesocosms were placed 100 m from a natural wetland and allowed to colonize for 82 days. Facilitation of invertebrate colonization led to communities in inoculated and stocked + inoculated treatments that contrasted strongly with those in the unaided control treatment. Control mesocosms had the highest taxa richness but the lowest diversity due to high densities and dominance of Tanytarsini (Diptera: Chironomidae). Community structure in inoculated and stocked + inoculated mesocosms was more similar to that of a nearby natural wetland, with abundance more evenly distributed among taxa, leading to diversity that was higher than in the control treatment. Inoculated and stocked + inoculated communities were dominated by non-aerial invertebrates, whereas control mesocosms were dominated by aerial invertebrates. These results suggest that facilitation of invertebrate recruitment does indeed alter invertebrate community development and that facilitation may lead to a more natural community structure in less time under conditions simulating wetland restoration. [source] Effect of humic material on the bacterioplankton community composition in boreal lakes and mesocosmsENVIRONMENTAL MICROBIOLOGY, Issue 5 2005Kaisa Haukka Summary The bacterioplankton community composition in two Finnish forest lakes with different content of humic substances was studied by denaturing gradient gel electrophoresis (DGGE) and sequencing of the major bands. The same dominant bacterial phylotypes were detected in the bacterioplankton communities of clear-water Lake Ahvenlammi and humic Lake Sammalisto. For 4 years, in every water layer, Actinobacteria was the dominant and Verrucomicrobia the second most common phylum. In the hypolimnion, other dominant phyla were also found. We set up a mesocosm experiment to assess the effect of a sudden load of allochthonous humus extract to the bacterioplankton community composition. Changes in the bacterial communities were followed in four control and four humus extract-added mesocosms for 50 days. In the humic mesocosms the phylotypes of allochthonous Proteobacteria arriving with the humus extract were initially prevalent but disappeared during the first weeks. After this the Actinobacteria -dominated communities resembled the bacterioplankton communities of the control mesocosms and Lake Ahvenlammi. Towards the end of the experiment the community patterns in all the mesocosms started to change slightly because of erratic occurrence of new proteobacterial phylotypes. Thus the effects of a sudden load of allochthonous humic material and bacteria to the bacterioplankton community composition were transient. [source] Effects of increased temperature and nutrient enrichment on the stoichiometry of primary producers and consumers in temperate shallow lakesFRESHWATER BIOLOGY, Issue 7 2008M. VENTURA Summary 1. We studied the effects of increased water temperatures (0,4.5 °C) and nutrient enrichment on the stoichiometric composition of different primary producers (macrophytes, epiphytes, seston and sediment biofilm) and invertebrate consumers in 24 mesocosm ecosystems created to mimic shallow pond environments. The nutrient ratios of primary producers were used as indicative of relative nitrogen (N) or phosphorus (P) limitation. We further used carbon stable isotopic composition (,13C) of the different primary producers to elucidate differences in the degree of CO2 limitation. 2. Epiphytes were the only primary producer with significantly higher ,13C in the enriched mesocosms. No temperature effects were observed in ,13C composition of any primary producer. Independently of the treatment effects, the four primary producers had different ,13C signatures indicative of differences in CO2 limitation. Seston had signatures indicating negligible or low CO2 limitation, followed by epiphytes and sediment biofilm, with moderate CO2 limitation, while macrophytes showed the strongest CO2 limitation. CO2 together with biomass of epiphytes were the key variables explaining between 50 and 70% of the variability in ,13C of the different primary producers, suggesting that epiphytes play an important role in carbon flow of temperate shallow lakes. 3. The ratio of carbon to chlorophyll a decreased with increasing temperature and enrichment in both epiphytes and seston. The effects of temperature were mainly attributed to changes in algal Chl a content, while the decrease with enrichment was probably a result of a higher proportion of algae in the seston and epiphytes. 4. Macrophytes, epiphytes and seston decreased their C : N with enrichment, probably as an adaptation to the different N availability levels. The C : N of epiphytes and Elodea canadensis decreased with increasing temperature in the control mesocosms. Sediment biofilm was the only primary producer with lower C : P and N : P with enrichment, probably as a result of higher P accumulation in the sediment. 5. Independently of nutrient level and increased temperature effects the four primary producers had significantly different stoichiometric compositions. Macrophytes had higher C : N and C : P and, together with epiphytes, also the highest N : P. Seston had no N or P limitation, while macrophytes and epiphytes may have been P limited in a few mesocosms. Sediment biofilm indicated strong N deficiency. 6. Consumers had strongly homeostatic stoichiometric compositions in comparison to primary producers, with weak or no significant treatment effects in any of the groups (insects, leeches, molluscs and crustaceans). Among consumers, predators had significantly higher N content and lower C : N than grazers. [source] Does Facilitation of Faunal Recruitment Benefit Ecosystem Restoration?RESTORATION ECOLOGY, Issue 4 2002An Experimental Study of Invertebrate Assemblages in Wetland Mesocosms Abstract We used wetland mesocosms (1) to experimentally assess whether inoculating a restored wetland site with vegetation/sediment plugs from a natural wetland would alter the development of invertebrate communities relative to unaided controls and (2) to determine if stocking of a poor invertebrate colonizer could further modify community development beyond that due to simple inoculation. After filling mesocosms with soil from a drained and cultivated former wetland and restoring comparable hydrology, mesocosms were randomly assigned to one of three treatments: control (a reference for unaided community development), inoculated (received three vegetation/sediment cores from a natural wetland), and stocked + inoculated (received three cores and were stocked with a poorly dispersing invertebrate group,gastropods). All mesocosms were placed 100 m from a natural wetland and allowed to colonize for 82 days. Facilitation of invertebrate colonization led to communities in inoculated and stocked + inoculated treatments that contrasted strongly with those in the unaided control treatment. Control mesocosms had the highest taxa richness but the lowest diversity due to high densities and dominance of Tanytarsini (Diptera: Chironomidae). Community structure in inoculated and stocked + inoculated mesocosms was more similar to that of a nearby natural wetland, with abundance more evenly distributed among taxa, leading to diversity that was higher than in the control treatment. Inoculated and stocked + inoculated communities were dominated by non-aerial invertebrates, whereas control mesocosms were dominated by aerial invertebrates. These results suggest that facilitation of invertebrate recruitment does indeed alter invertebrate community development and that facilitation may lead to a more natural community structure in less time under conditions simulating wetland restoration. [source] |