Control Leaves (control + leaf)

Distribution by Scientific Domains


Selected Abstracts


Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism

MOLECULAR PLANT PATHOLOGY, Issue 2 2000
Hsueh-Mei Chou
Albugo candida (Pers.) (O.) Kunze is a biotrophic pathogen which infects the crucifer Arabidopsis thaliana (L.) Heynh forming discrete areas of infection. Eight days after inoculation of leaves, white blisters became visible on the under surface of the leaf although no symptoms were apparent on the upper surface. By day 14, the region of leaf invaded by fungal mycelium had become chlorotic. Recently it has been hypothesized that an accumulation of soluble carbohydrates, following an increase in invertase activity, may trigger sugar signal transduction pathways leading to the repression of photosynthetic gene expression and to the induction of defence proteins. This hypothesis was investigated by quantifying localized changes in carbohydrate and photosynthetic metabolism and the expression of genes encoding photosynthetic and defence proteins. Quantitative imaging of chlorophyll fluorescence revealed that the rate of photosynthesis declined progressively in the invaded regions of the leaf. However, in uninfected regions of the infected leaf the rate of photosynthesis was similar to that measured in the control leaf until late on during the infection cycle when it declined. Images of nonphotochemical fluorescence quenching (NPQ) suggested that the capacity of the Calvin cycle had been reduced in infected regions and that there was a complex metabolic heterogeneity within the infected leaf. A. candida also caused localized changes in the carbohydrate metabolism of the leaf; soluble carbohydrates accumulated in the infected region whereas the amount of starch declined. The reverse was seen in uninfected regions of the infected leaf; carbohydrates did not accumulate until late on during infection and the amount of starch increased as the infection progressed. There was an increase in the activity of invertases which was confined to regions of the leaf invaded by the fungal mycelium. The increase in apoplastic invertase activity was of host origin, as mRNA levels of the AT,FRUCT1 gene (measured by semiquantitative RT-PCR) increased 40-fold in the infected region. The increase in soluble invertase activity resulted from the appearance of a new isoform in the invaded region of the leaf. Current evidence suggests that this was of fungal origin. Northern blot analysis of cab and rbcS showed that photosynthetic gene expression was repressed in the infected leaf from 6 days after inoculation (DAI) when compared to control leaves. In contrast, there was no detectable induction of defence proteins in the infected leaf. These data are discussed in the context of the sugar-sensing hypothesis presented above. [source]


Biochemical changes in cut vs. intact lamb's lettuce (Valerianella olitoria) leaves during storage

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 5 2009
Antonio Ferrante
Summary Consumers are oriented towards fresh-cut vegetables that provide phytonutrients useful for preventing stress-related diseases. The aim of this work was to evaluate the cut operations on the quality changes of lamb's lettuce (Valerianella olitoria L.) cv. Trofy during storage at 4 °C for 8 days. Results showed that chlorophyll and carotenoids reduction was observed after 8 days of storage. In both treatments, total carotenoids after 8 days decreased from 20 to 16 mg g,1 FW. Free and total phenols increased with storage in both treatments. Total phenols were 23% higher in control (32 ,mol g,1 FW) compared to cut leaves (25 ,mol g,1 FW) after 8 days of storage. Anthocyanins increased after 8 days and reached 30 mg 100 g,1 FW without significant difference between treatments. Ascorbic acid (AsA) and dehydroascorbic (DHA) acid increased in cut leaves compared to control. After 1 day AsA concentration was 3 300 nmol g,1 FW in cut leaves, while in control leaves was 1 500 nmol g,1 FW. Analogously AsA + DHA was higher in cut leaves, 4 100 nmol g,1 FW, while in control leaves the mean was 3 000 nmol g,1 FW. After 5 days of storage the values of AsA returned to initial values, while AsA + DHA were lower. [source]


Xanthophyll Cycle and Inactivation of Photosystem II Reaction Centers Alleviating Reducing Pressure to Photosystem I in Morning Glory Leaves under Short-term High Irradiance

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 7 2007
Xin-Guo Li
Abstract Under 30-min high irradiance (1500 ,mol m,2 s,1), the roles of the xanthophyll cycle and D1 protein turnover were investigated through chlorophyll fluorescence parameters in morning glory (Ipomoea setosa) leaves, which were dipped into water, dithiothreitol (DTT) and lincomycin (LM), respectively. During the stress, both the xanthophyll cycle and D1 protein turnover could protect PSI from photoinhibition. In DTT leaves, non-photochemical quenching (NPQ) was inhibited greatly and the oxidation level of P700 (P700+) was the lowest one. However, the maximal photochemical efficiency of PSII (Fv/Fm) in DTT leaves was higher than that of LM leaves and was lower than that of control leaves. These results suggested that PSI was more sensitive to the loss of the xanthophyll cycle than PSII under high irradiance. In LM leaves, NPQ was partly inhibited, Fv/Fm was the lowest one among three treatments under high irradiance and P700+ was at a similar level as that of control leaves. These results implied that inactivation of PSII reaction centers could protect PSI from further photoinhibition. Additionally, the lowest of the number of active reaction centers to one inactive reaction center for a PSII cross-section (RC/CSo), maximal trapping rate in a PSII cross-section (TRo/CSo), electron transport in a PSII cross-section (ETo/CSo) and the highest of 1-qP in LM leaves further indicated that severe photoinhibition of PSII in LM leaves was mainly induced by inactivation of PSII reaction centers, which limited electrons transporting to PSI. However, relative to the LM leaves the higher level of RC/CSo, TRo/CSo, Fv/Fm and the lower level of 1-qP in DTT leaves indicated that PSI photoinhibition was mainly induced by the electron accumulation at the PSI acceptor side, which induced the decrease of P700+ under high irradiance. [source]


The effects of Pierce's disease on leaf and petiole hydraulic conductance in Vitis vinifera cv. Chardonnay

PHYSIOLOGIA PLANTARUM, Issue 4 2009
Brendan Choat
In this study, we test the hypothesis that the symptoms of Pierce's Disease (PD) result from the occlusion of xylem conduits by the bacteria Xylella fastidiosa (Xf ). Four treatments were imposed on greenhouse-grown Vitis vinifera cv. Chardonnay: well-watered and deficit-irrigated plants with and without petiole inoculation with Xf. The hydraulic conductance of the stem-petiole junction (kjun) and leaves (kleaf) were measured, and Xf concentrations were established by quantitative polymerase chain reaction (qPCR). Leaf hydraulic conductance decreased with increasing leaf scorch symptoms in both irrigation treatments. The positive relationship between Xf concentration and symptom formation in deficit-irrigated plants suggests that water-stress increases susceptibility to PD. In field-grown vines, water relations of symptomatic leaves were similar to naturally senescing leaves but differed from green control leaves. Overall, these results suggest that the development of PD symptoms represents a form of accelerated senescence as part of a systemic response of the plant to Xf infection. [source]


Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves

PHYSIOLOGIA PLANTARUM, Issue 2 2002
José A. Hernández
In pea (Pisum sativum L.) plants the effect of short-term salt stress and recovery on growth, water relations and the activity of some antioxidant enzymes was studied. Leaf growth was interrupted by salt addition. However, during recovery, growth was restored, although there was a delay in returning to control levels. Salt stress brought about a decrease in osmotic potential and in stomatal conductance, but at 48 h and 24 h post-stress, respectively, both parameters recovered control values. In pea leaves, a linear increase in the Na+ concentration was observed in salt treated plants. In the recovered plants, a slight reduction in the Na+ concentration was observed, probably due to a dilution effect since the plant growth was restored and the total Na+ content was maintined in leaves after the stress period. A significant increase of SOD activity occurred after 48 h of stress and after 8 h of the recovery period (53% and 42%, respectively), and it reached control values at 24 h post-stress. APX activity did not change during the stress period, and after only 8 h post-stress it was increased by 48% with respect to control leaves. GR showed a 71% increase after 24 h of salt stress and also a significant increase was observed in the recovered plants. A strong increase of TBARS was observed after 8 h of stress (180% increase), but then a rapid decrease was observed during the stress period. Surprisingly, TBARS again increased at 8 h post-stress (78% increase), suggesting that plants could perceive the elimination of NaCl from the hydroponic cultures as another stress during the first hours of recovery. These results suggest that short-term NaCl stress produces reversible effects on growth, leaf water relations and on SOD and APX activities. This work also suggests that both during the first hours of imposition of stress and during the first hours of recovery an oxidative stress was produced. [source]


Midday depression of photosynthesis and effects of mist spray in citrus

ANNALS OF APPLIED BIOLOGY, Issue 1 2009
M.-J. Hu
Abstract Diurnal variations of gas exchange, chlorophyll a fluorescence and some related biochemical characteristics in sun-acclimated mature citrus leaves of mist-sprayed (treatment) and unsprayed (control) trees were compared on sunny days during summer to identify the environmental and physiological factors limiting carbon gain in citrus tree canopies. At midday, net photosynthesis and maximal photochemical efficiency of photosystem II (Fv/Fm) in citrus leaves decreased significantly under control conditions, but the decrease was mitigated by mist spraying. Although the content of malondialdehyde, hydrogen peroxide and activities of antioxidant enzymes increased at midday in both mist-sprayed and control leaves, they were much higher in control leaves than in mist-sprayed leaves. The level of D1 protein decreased significantly in control leaves at midday and then was partly recovered later, while that in treated leaves changed to a much lesser extent because of alleviation of photoinhibition by mist spraying. Both the fast and the slow phases of millisecond-delayed light emissions in treated citrus leaves were higher than those in control leaves, indicating that mist spraying protects the normal operation of the photosynthetic apparatus in leaves. Mist spraying also reduced leaf temperatures and the ratio of air to leaf vapour pressure deficit (ALVPD), leading to increases in stomatal conductance (gs) and alleviation of photoinhibition at midday. It is concluded that the decline of leaf gs under high-ALVPD conditions in summer is an important factor contributing to midday depression of photosynthesis in citrus, and mist spraying is effective in alleviating midday depression of photosynthesis in citrus leaves. [source]


Ethylene-induced hyponastic growth in Arabidopsis thaliana is controlled by ERECTA

THE PLANT JOURNAL, Issue 1 2010
Martijn Van Zanten
Summary Plants can respond quickly and profoundly to detrimental changes in their environment. For example, Arabidopsis thaliana can induce an upward leaf movement response through differential petiole growth (hyponastic growth) to outgrow complete submergence. This response is induced by accumulation of the phytohormone ethylene in the plant. Currently, only limited information is available on how this response is molecularly controlled. In this study, we utilized quantitative trait loci (QTL) analysis of natural genetic variation among Arabidopsis accessions to isolate novel factors controlling constitutive petiole angles and ethylene-induced hyponastic growth. Analysis of mutants in various backgrounds and complementation analysis of naturally occurring mutant accessions provided evidence that the leucin-rich repeat receptor-like Ser/Thr kinase gene, ERECTA, controls ethylene-induced hyponastic growth. Moreover, ERECTA controls leaf positioning in the absence of ethylene treatment. Our data demonstrate that this is not due to altered ethylene production or sensitivity. [source]