Control Design Procedure (control + design_procedure)

Distribution by Scientific Domains


Selected Abstracts


Optimal solid shell element for large deformable composite structures with piezoelectric layers and active vibration control

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 15 2005
X. G. Tan
Abstract In this paper, we present an optimal low-order accurate piezoelectric solid-shell element formulation to model active composite shell structures that can undergo large deformation and large overall motion. This element has only displacement and electric degrees of freedom (dofs), with no rotational dofs, and an optimal number of enhancing assumed strain (EAS) parameters to pass the patch tests (both membrane and out-of-plane bending). The combination of the present optimal piezoelectric solid-shell element and the optimal solid-shell element previously developed allows for efficient and accurate analyses of large deformable composite multilayer shell structures with piezoelectric layers. To make the 3-D analysis of active composite shells containing discrete piezoelectric sensors and actuators even more efficient, the composite solid-shell element is further developed here. Based on the mixed Fraeijs de Veubeke,Hu,Washizu (FHW) variational principle, the in-plane and out-of-plane bending behaviours are improved via a new and efficient enhancement of the strain tensor. Shear-locking and curvature thickness locking are resolved effectively by using the assumed natural strain (ANS) method. We also present an optimal-control design for vibration suppression of a large deformable structure based on the general finite element approach. The linear-quadratic regulator control scheme with output feedback is used as a control law on the basis of the state space model of the system. Numerical examples involving static analyses and dynamic analyses of active shell structures having a large range of element aspect ratios are presented. Active vibration control of a composite multilayer shell with distributed piezoelectric sensors and actuators is performed to test the present element and the control design procedure. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Iterative adaptive robust control of multivariable CD processes

INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 8 2010
Fazel Farahmand
Abstract In this paper we present a novel adaptive robust control approach to the multivariable cross-directional (CD) process of continuous web manufacturing. The common assumption of spatial frequency decomposition (SFD) is used to allow the process analysis in terms of a family of single-input single-output (SISO) transfer functions across the spatial frequencies. We then apply discretized Windsurfing adaptive robust control to each individual separated spatial frequency, starting with a stable initial model and a robust stabilizing controller at each spatial frequency. This approach allows the 2D bandwidth of the closed-loop system to be increased progressively at each spatial frequency through an iterative relevant system identification and control design procedure. The method deals with both model uncertainty and measurement noise issues. Simulation results are given to illustrate the performance of the applied method. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Robust control from data via uncertainty model sets identification

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 11 2004
S. Malan
Abstract In this paper an integrated robust identification and control design procedure is proposed. The plant to be controlled is supposed to be linear, time invariant, stable, possibly infinite dimensional and a set of noise-corrupted input,output measurements is supposed to be available. The emphasis is placed on the design of controllers guaranteeing robust stability and robust performances, and on the trade-off between controller complexity and achievable robust performances. First, uncertainty models are identified, consisting of parametric models of different order and tight frequency bounds on the magnitude of the unmodelled dynamics. Second, Internal Model Controllers, guaranteeing robust closed-loop stability and best approximating the ,perfect control' ideal target, are designed using H,/,-synthesis techniques. Then, the robust performances of the designed controllers are computed, allowing one to determine the level of model/controller complexity needed to guarantee desired closed-loop performances. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Adaptive output feedback control for a class of planar nonlinear systems,

ASIAN JOURNAL OF CONTROL, Issue 5 2009
Fang Shang
Abstract This paper is concerned with the problem of global adaptive stabilization by output feedback for a class of planar nonlinear systems with uncertain control coefficient and unknown growth rate. The control coefficient is not supposed to have known upper bound, and this relaxes the corresponding requirement in the existing literature (see e.g. 1, 2. First, by the universal control method, an observer is constructed based on the dynamic high-gain K-filters. Then, the control design procedure is developed to obtain the stabilizing controller and dynamic compensator for the uncertainties in the control coefficient. It is shown that the global stability of the closed-loop system can be guaranteed by the appropriate choice of the design parameters. A simulation example is also provided to illustrate the correctness of the theoretical results. © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society. [source]