Contractile Performance (contractile + performance)

Distribution by Scientific Domains


Selected Abstracts


CaMKII is necessary to extend contractile performance and delay fatigue in skeletal muscle

ACTA PHYSIOLOGICA, Issue 2 2007
Francisco H. AndradeArticle first published online: 7 SEP 200
No abstract is available for this article. [source]


In vitro effects of lidocaine on the contractility of equine jejunal smooth muscle challenged by ischaemia-reperfusion injury

EQUINE VETERINARY JOURNAL, Issue 1 2010
M. GUSCHLBAUER
Summary Reasons for performing study: Post operative ileus (POI) in horses is a severe complication after colic surgery. A commonly used prokinetic drug is lidocaine, which has been shown to have stimulatory effects on intestinal motility. The cellular mechanisms through which lidocaine affects smooth muscle activity are not yet known. Objectives: To examine the effects of lidocaine on smooth muscle in vitro and identify mechanisms by which it may affect the contractility of intestinal smooth muscle. Hypothesis: Ischaemia and reperfusion associated with intestinal strangulation can cause smooth muscle injury. Consequently, muscle cell functionality and contractile performance is decreased. Lidocaine can improve basic cell functions and thereby muscle cell contractility especially in ischaemia-reperfusion-challenged smooth muscle. Methods: To examine the effects of lidocaine on smooth muscle function directly, isometric force performance was measured in vitro in noninjured and in vivo ischaemia-reperfusion injured smooth muscle tissues. Dose-dependent response of lidocaine was measured in both samples. To assess membrane permeability as a marker of basic cell function, release of creatine kinase (CK) was measured by in vitro incubations. Results: Lidocaine-stimulated contractility of ischaemia-reperfusion injured smooth muscle was more pronounced than that of noninjured smooth muscle. A 3-phasic dose-dependency was observed with an initial recovery of contractility especially in ischaemia-reperfusion injured smooth muscle followed by a plateau phase where contractility was maintained over a broad concentration range. CK release was decreased by lidocaine. Conclusion: Lidocaine may improve smooth muscle contractility and basic cell function by cellular repair mechanisms which are still unknown. Improving contractility of smooth muscle after ischaemia-reperfusion injury is essential in recovery of propulsive intestinal motility. Potential relevance: Characterisation of the cellular mechanisms of effects of lidocaine, especially on ischaemia-reperfusion injured smooth muscle, may lead to improved treatment strategies for horses with POI. [source]


Effect of dopamine on rat diaphragm apoptosis and muscle performance

EXPERIMENTAL PHYSIOLOGY, Issue 4 2006
Janet D. Pierce
The purpose of this study was to determine whether dopamine (DA) decreases diaphragm apoptosis and attenuates the decline in diaphragmatic contractile performance associated with repetitive isometric contraction using an in vitro diaphragm preparation. Strenuous diaphragm contractions produce free radicals and muscle apoptosis. Dopamine is a free radical scavenger and, at higher concentrations, increases muscle contractility by simulating ,2 -adrenoreceptors. A total of 47 male Sprague,Dawley rats weighing 330,450 g were used in a prospective, randomized, controlled in vitro study. Following animal anaesthetization, diaphragms were excised, and muscle strips prepared and placed in a temperature-controlled isolated tissue bath containing Krebs,Ringer solution (KR) or KR plus 100 ,m DA. The solutions were equilibrated with oxygen (O2) at 10, 21 or 95% and 5% carbon dioxide, with the balance being nitrogen. Diaphragm isometric twitch and subtetanic contractions were measured intermittently over 65 min. The diaphragms were then removed and, using a nuclear differential dye uptake method, the percentages of normal, apoptotic and necrotic nuclei were determined using fluorescent microscopy. There were significantly fewer apoptotic nuclei in the DA group diaphragms than in the KR-only group diaphragms in 10 and 21% O2 following either twitch or subtetanic contractions. Dopamine at 100 ,m produced only modest increases in muscle performance in both 10 and 21% O2. The attenuation of apoptosis by DA was markedly greater than the effect of DA on muscle performance. Dopamine decreased diaphragmatic apoptosis, perhaps by preventing the activation of intricate apoptotic pathways, stimulating antiapoptotic mechanisms and/or scavenging free radicals. [source]


Proteomic profiling of KATP channel-deficient hypertensive heart maps risk for maladaptive cardiomyopathic outcome

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 5 2009
Jelena Zlatkovic
Abstract KCNJ11 null mutants, lacking Kir6.2 ATP-sensitive K+ (KATP) channels, exhibit a marked susceptibility towards hypertension (HTN)-induced heart failure. To gain insight into the molecular alterations induced by knockout of this metabolic sensor under hemodynamic stress, wild-type (WT) and Kir6.2 knockout (Kir6.2-KO) cardiac proteomes were profiled by comparative 2-DE and Orbitrap MS. Despite equivalent systemic HTN produced by chronic hyperaldosteronism, 114 unique proteins were altered in Kir6.2-KO compared to WT hearts. Bioinformatic analysis linked the primary biological function of the KATP channel-dependent protein cohort to energetic metabolism (64% of proteins), followed by signaling infrastructure (36%) including oxidoreductases, stress-related chaperones, processes supporting protein degradation, transcription and translation, and cytostructure. Mapped protein,protein relationships authenticated the primary impact on metabolic pathways, delineating the KATP channel-dependent subproteome within a nonstochastic network. Iterative systems interrogation of the proteomic web prioritized heart-specific adverse effects, i.e., "Cardiac Damage", "Cardiac Enlargement", and "Cardiac Fibrosis", exposing a predisposition for the development of cardiomyopathic traits in the hypertensive Kir6.2-KO. Validating this maladaptive forecast, phenotyping documented an aggravated myocardial contractile performance, a massive interstitial fibrosis and an exaggerated left ventricular size, all prognostic indices of poor outcome. Thus, Kir6.2 ablation engenders unfavorable proteomic remodeling in hypertensive hearts, providing a composite molecular substrate for pathologic stress-associated cardiovascular disease. [source]


Combined blockade of endothelin-1 and thromboxane A2 receptors against postischaemic contractile dysfunction in rat hearts

BRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2001
Pius S Hornstein
Endothelin-1 (ET-1) may play a role in myocardial ischaemia/reperfusion injury because both the release and vasoconstrictor effect of ET-1 are increased after ischaemia. Since the increased vasoconstrictor effect of ET-1 can be mediated by ET-1-induced release of thromboxane A2 (TXA2), the aim of this study was to test whether combined blockade of ET and TXA2 receptors protects the coronary flow, contractile performance, and cardiac energy metabolism during ischaemia and reperfusion. Bosentan (antagonist for ETA and ETB receptors, 1 ,M based on concentration-response curves of ET-1), SQ 30,741 (antagonist of TXA2 receptors, 0.1 ,M), or the combination thereof was administered to isolated perfused rat hearts undergoing 15 min of global ischaemia and 60 min of reperfusion. Neither bosentan or SQ 30,741 alone, nor the combination thereof, improved the incomplete postischaemic recovery of coronary flow, left ventricular developed pressure, phosphocreatine, or ATP. However, they attenuated ischaemia-induced acidosis but this did not translate into a measurable effect on haemodynamic or metabolic variables. Thus, combined blockade of ET and TXA2 receptors does not protect the coronary flow, contractile performance, and cardiac energy metabolism during ischaemia and reperfusion in isolated perfused rat hearts. This finding suggests that neither ET-1 nor ET-1-induced release of TXA2 play a major role in the postischaemic recovery of the cardiac contractile function and energy metabolism. British Journal of Pharmacology (2001) 132, 234,240; doi:10.1038/sj.bjp.0703773 [source]


Matters of the heart: the physiology of cardiac function and failure

EXPERIMENTAL PHYSIOLOGY, Issue 6 2007
Godfrey Smith
Heart failure as a result of a myocardial infarction (MI) is a common condition with a poor prognosis. The adaptive changes in the surviving myocardium appear to be insufficient in terms of both mechanical/contractile performance and electrical stability. The modification of the underlying myocardial physiology is complex, varying across the different layers within the wall of the ventricle and within one layer. Two therapeutic strategies are briefly discussed, as outlined here. (i) Enhancing contractility by alteration of the expression of a single protein (e.g. sarco-endoplasmic reticulum Ca2+ ATPase, SERCA) could potentially reverse both mechanical and electrical abnormalities. However, experimental data involving the upregulation of SERCA suggest that the therapeutic range of this approach is narrow. (ii) The use of regular exercise training to improve cardiac performance in heart failure. This appears to act by normalizing a number of aspects of myocardial physiology. [source]