Continuous Flow Process (continuous + flow_process)

Distribution by Scientific Domains
Distribution within Chemistry


Selected Abstracts


Fast and Enantioselective Production of 1-Aryl-1-propanols through a Single Pass, Continuous Flow Process

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 6 2008
Miquel
Abstract A functional polymer 4, obtained by reaction of (R)-2-(1-piperazinyl)-1,1,2-triphenylethanol with a Merrifield resin, has been loaded in a packed bed reactor and used as catalyst for the continuous enantioselective production of 1-arylpropanols by ethylation of aromatic aldehydes. The high catalytic activity depicted by 4 allows the complete conversion of the substrates with the use of stoichiometric reagent ratios and unprecedently short residence times (down to 2.8,min). In practice, a single-pass operation can be used for all the studied aldehydes, and productions of up to 13.0 mol/g,h are recorded. The sequential operation of the flow system for the uninterrupted synthesis of a small library of enantiopure 1-arylpropanols is also reported. [source]


ChemInform Abstract: Epoxidation of Alkenes Using HOF·MeCN by a Continuous Flow Process.

CHEMINFORM, Issue 30 2009
Christopher B. McPake
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


Combining Enabling Techniques in Organic Synthesis: Continuous Flow Processes with Heterogenized Catalysts

CHEMISTRY - A EUROPEAN JOURNAL, Issue 23 2006
Andreas Kirschning Prof. Dr.
Abstract The concepts article describes enabling techniques (solid-phase assisted synthesis, new reactor design, microwave irradiation and new solvents) in organic chemistry and emphasizes the combination of several of them for creating new synthetic technology platforms. Particular focus is put on the combination of immobilized catalysts as well as biocatalysts with continuous flow processes. In this context, the PASSflow continuous flow technique fulfils both chemical as well as chemical engineering requirements. It combines reactor design with optimized, monolithic solid phases as well as reversible immobilization techniques for performing small as well as large scale synthesis with heterogenized catalysts under continuous flow conditions. [source]


On-line cell lysis and DNA extraction on a microfluidic biochip fabricated by microelectromechanical system technology

ELECTROPHORESIS, Issue 9 2008
Xing Chen Dr.
Abstract Integrating cell lysis and DNA purification process into a micrototal analytical system (,TAS) is one critical step for the analysis of nucleic acids. On-chip cell lysis based on a chemical method is realized by sufficient blend of blood sample and the lyzing reagent. In this paper two mixing models, T-type mixing model and sandwich-type mixing model, are proposed and simulation of those models is conducted. Result of simulation shows that the sandwich-type mixing model with coiled channel performs best and this model is further used to construct the microfluidic biochip for on-line cell lysis and DNA extraction. The result of simulation is further verified by experiments. It asserts that more than 80% mixing of blood sample and lyzing reagent which guarantees that completed cell lysis can be achieved near the inlet location when the cell/buffer velocity ratio is less than 1:5. After cell lysis, DNA extraction by means of a solid-phase method is implemented by using porous silicon matrix which is integrated in the biochip. During continuous flow process in the microchip, rapid cell lysis and PCR-amplifiable genomic DNA purification can be achieved within 20,min. The potential of this microfluidic biochip is illustrated by pretreating a whole blood sample, which shows the possibility of integration of sample preparation, PCR, and separation on a single device to work as portable point-of-care medical diagnostic system. [source]


The Use of Copper Flow Reactor Technology for the Continuous Synthesis of 1,4-Disubstituted 1,2,3-Triazoles

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 6 2009
Andrew
Abstract A library of 1,4-disubstituted 1,2,3-triazoles was synthesized using a copper flow reactor. Organic azides, generated in situ from alkyl halides and sodium azide, were reacted with acetylenes using the copper-catalyzed Huisgen 1,3-dipolar cycloaddition. This process eliminates both the handling of organic azides and the need for additional copper catalyst and permits the facile preparation of numerous triazoles in a continuous flow process. [source]


Modular Microreaction Systems for Homogeneously and Heterogeneously Catalyzed Chemical Synthesis

HELVETICA CHIMICA ACTA, Issue 1 2005
Daniel
Until now, microreaction devices designed for a specific type of reaction were used mainly for highly exothermic, very fast reactions. Described is a modular microreaction system and its application to representative homogeneous and heterogeneous reactions important in organic synthesis. The modular microreaction system allows continuous flow processes to be optimized and employed effectively in the chemical laboratory. The modular microreaction systems proved also versatile for syntheses requiring moderate reaction times, thus extending their application to a large fraction of organic reactions. The use of the modular and cleanable microreaction systems to rapidly develop optimized reaction conditions provides an excellent basis for the development of many chemical transformations scalable from milligram to ton production quantities. [source]


Combining Enabling Techniques in Organic Synthesis: Continuous Flow Processes with Heterogenized Catalysts

CHEMISTRY - A EUROPEAN JOURNAL, Issue 23 2006
Andreas Kirschning Prof. Dr.
Abstract The concepts article describes enabling techniques (solid-phase assisted synthesis, new reactor design, microwave irradiation and new solvents) in organic chemistry and emphasizes the combination of several of them for creating new synthetic technology platforms. Particular focus is put on the combination of immobilized catalysts as well as biocatalysts with continuous flow processes. In this context, the PASSflow continuous flow technique fulfils both chemical as well as chemical engineering requirements. It combines reactor design with optimized, monolithic solid phases as well as reversible immobilization techniques for performing small as well as large scale synthesis with heterogenized catalysts under continuous flow conditions. [source]