Continental Scale (continental + scale)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


DISCOVERING EXCEPTIONAL DIVERSIFICATIONS AT CONTINENTAL SCALES: THE CASE OF THE ENDEMIC FAMILIES OF NEOTROPICAL SUBOSCINE PASSERINES

EVOLUTION, Issue 7 2010
Santiago Claramunt
The study of continental adaptive radiations has lagged behind research on their island counterparts in part because the mere identification of adaptive radiations is more challenging at continental scales. Here, I demonstrate a new method based on simulations for discovering clades that show exceptionally high phenotypic diversity. The method does not require a phylogeny but accounts for differences in age and species richness among clades and incorporates effects of the phylogenetic structure of data. In addition, I developed a new multivariate measure of phenotypic diversity, which has the advantage over other measures of disparity in that it takes covariation into account. I applied these methods to a clade of endemic Neotropical suboscine passerines, within which the family Furnariidae has been considered an adaptive radiation. I found that the families Thamnophilidae, Furnariidae, and Dendrocolaptidae have experienced a higher rate of cladogenesis than have other clades. Although Thamnophilidae is exceptionally diverse in body size, only Furnariidae and Dendrocolaptidae are exceptionally diverse in shape. The combination of high rates of cladogenesis and high morphometric diversity in traits related to feeding and locomotion suggest that the clade Furnariidae-Dendrocolaptidae represent an authentic continental adaptive radiation. [source]


Performance of Sub-Saharan Vertebrates as Indicator Groups for Identifying Priority Areas for Conservation

CONSERVATION BIOLOGY, Issue 1 2003
Joslin L. Moore
Often, these sets of important areas, referred to as priority sets, have been identified through use of data on a single taxon (e.g., birds), which is assumed to act as an indicator for all biodiversity. Using a database of the distributions of 3882 vertebrate species in sub-Saharan Africa, we conducted one of very few large-scale tests of this assumption. We used six potential indicator groups,birds, mammals, amphibians, snakes, threatened birds, and threatened mammals,to find priority sets of 200 areas that best represent the species in that group. Priority sets of grid cells designed to maximize representation of a single indicator group captured 83,93% of species in the other groups. This high degree of representation is consistent with observed high levels of overlap in the patterns of distribution of species in different groups. Those species of highest conservation interest were more poorly represented, however, with only 75,88% of other groups' threatened species and 63,76% of other groups' narrow-range species represented in the priority sets. We conclude that existing priority sets based on indicator groups provide a pragmatic basis for the immediate assessment of priorities for conservation at a continental scale. However, complete and efficient representation,especially of narrow-range species,will not be achieved through indicator groups alone. Therefore, priority-setting procedures must remain flexible so that new areas important for other taxa can be incorporated as data become available. Resumen: La meta de la identificación de prioridades globales y continentales de conservación es la identificación de áreas particularmente valiosas para la conservación en las cuales enfocar esfuerzos más detallados. A menudo, estos conjuntos de áreas importantes (referidas como conjuntos prioritarios) han sido identificados utilizando datos de un solo taxón (e. g. aves), el cual se supone que actúa como indicador de toda la biodiversidad. Utilizando una base de datos de la distribución de 3882 especies de vertebrados en África sub-Sahara, realizamos una de las pocas pruebas a gran escala de este supuesto. Utilizamos seis grupos de indicadores potenciales (aves, mamíferos, anfibios, serpientes, aves amenazadas y mamíferos amenazados ) para encontrar conjuntos prioritarios de 200 áreas que mejor representan las especies de ese grupo. Conjuntos prioritarios de celdas matriciales diseñadas para maximizar la representatividad de un grupo indicador capturaron 83,93% de las especies de los otros grupos. Este alto grado de representatividad es consistente con los altos niveles de superposición observados en los patrones de distribución de especies en los diferentes grupos. Sin embargo, las especies de mayor interés para la conservación estaban poco representadas, con solo 75,88% de las especies amenazadas de otros grupos y 63,76% de las especies de distribución restringida de otros grupos representados en los conjuntos prioritarios. Concluimos que los conjuntos prioritarios existentes, basados en grupos indicadores, proporcionan una base pragmática para la evaluación inmediata de las prioridades de conservación a escala continental. Sin embargo, no se logrará la representación completa y eficiente,especialmente de especies de distribución restringida,solo con grupos indicadores. Por lo tanto, los procedimientos de definición de prioridades deben permanecer flexibles para que se puedan incorporar nuevas áreas importantes para otros taxones a medida que se obtienen los datos. [source]


A latitudinal gradient of beta diversity for exotic vascular plant species in North America

DIVERSITY AND DISTRIBUTIONS, Issue 3 2008
Hong Qian
ABSTRACT Determining relationships between the ranges of introduced species and geographical and environmental factors is an important step in understanding the mechanisms and processes of the spread of introduced species. In this study, I examined the beta diversity and latitude relationship for all naturalized exotic species of vascular plants in North America at a continental scale. Beta diversity was calculated as the absolute value of the slope of the relationship between the natural logarithm of the Simpson index of similarity (lnS) and spatial distance between pairs of state-level exotic floras within four latitudinal zones examined. Relative contributions of spatial distance and environmental difference to species turnover between exotic floras were examined. I found that beta diversity decreased monotonically from low to high latitudes: beta diversity for the southernmost zone was shallower than that for the northernmost zone by a factor of 2.6. Regression models of lnS in relation to spatial distance and environmental (climatic and topographical) difference for each latitudinal zone demonstrated that the explanatory power of these variables diminishes monotonically with latitude: the explained variance in lnS is 70.4%, 62.1%, 53.9%, and 33.9%, respectively, for the four latitudinal zones from south to north. For the southernmost zone, 58.3% of the variance in lnS is explained by climate variables and topography, and spatial distance explains only 2.3% of the variance. In contrast, for the northernmost zone, more than half the amount (22.5%) of the explained variance in lnS is attributable to spatial distance, and the remaining (18.9%) of the explained variance is attributable to climate variables and topography. [source]


A latitudinal gradient in large-scale beta diversity for vascular plants in North America

ECOLOGY LETTERS, Issue 8 2007
Hong Qian
Abstract Species turnover, or beta diversity, has been predicted to decrease with increasing latitude, but few studies have tested this relationship. Here, we examined the beta diversity,latitude relationship for vascular plants at a continental scale, based on complete species lists of native vascular plants for entire states or provinces in North America (north of Mexico). We calculated beta diversity as the slope of the relationship between the natural logarithm of the Jaccard index (lnJ,) for families, genera or species, and both geographic distance and climate difference within five latitude zones. We found that beta diversity decreased from south to north; within latitude zones, it decreased from species to genera and families. Geographic and climatic distance explained about the same proportion of the variance in lnJ in zones south of c. 50°N. North of this latitude, nearly all the explained variance in lnJ was attributable to geographic distance. Therefore, decreasing beta diversity from south to north reflects decreasing climate differentiation within more northerly latitude zones, and primarily post-glacial dispersal limitation north of 50°N. [source]


The Treaty of Nice: The Sharing of Power and the Institutional Balance in the European Union,A Continental Perspective

EUROPEAN LAW JOURNAL, Issue 3 2001
Xenophon A. Yataganas
This paper presents an initial response to the conclusions of the Nice Summit and the new EU Treaty which emerged from it. It consists of two parts: in the first I discuss the climate in which the Intergovernmental Conference (IGC) took place and the opening positions of the Institutions, the Member States, and the applicant countries. The results achieved at Nice are set out in the second part, with special emphasis on the themes that mark a shift of power within the Community's institutional architecture; i.e. the extension of qualified-majority voting in the Council and the co-decision procedure with the European Parliament, the reweighting of votes and the composition of the Institutions with a view to an enlargement which is both imminent and unprecedented in the history of the EU. I conclude that while the results of the IGC and the new Treaty of Nice fall short of what is needed in an EU with ambitions on a continental scale, they do mark another stage in the process of European integration and the permanent evolution of its constitution. In this sense, the balance of power is likely to be different from what it has been in the past. The Franco-German axis has been severely weakened, the UK and Spain seem to be determined to play a central role, and the smaller countries are seeking to retain some influence over how the process works. New alliances are likely to emerge, particularly after enlargement, with Germany in search of a dominant position, France desperately trying to preserve the status quo, and the UK wanting to influence the direction of moves towards integration from the inside. Nice seems to mark an interim stage in this process. A new IGC has already been scheduled for 2004. There is no doubt that the post-Nice period will be one of transition towards a new distribution of power within the EU, sanctioned by a new, highly constitutional treaty. [source]


Are local weather, NDVI and NAO consistent determinants of red deer weight across three contrasting European countries?

GLOBAL CHANGE BIOLOGY, Issue 7 2009
MARÍA MARTÍNEZ-JAUREGUI
Abstract There are multiple paths via which environmental variation can impact herbivore ecology and this makes the identification of drivers challenging. Researchers have used diverse approaches to describe the association between environmental variation and ecology, including local weather, large-scale patterns of climate, and satellite imagery reflecting plant productivity and phenology. However, it is unclear to what extent it is possible to find a single measure that captures climatic effects over broad spatial scales. There may, in fact, be no a priori reason to expect populations of the same species living in different areas to respond in the same way to climate as their population may experience limiting factors at different times of the year, and the forms of regulation may differ among populations. Here, we examine whether the same environmental indices [seasonal Real Bioclimatic Index (RBI), seasonal Normalized Difference Vegetation Index (NDVI) and winter North Atlantic Oscillation (NAO)] influence body size in different populations of a large ungulate living in Mediterranean Spain, Western Scotland and Norway. We found substantial differences in the pattern of weight change over time in adult female red deer among study areas as well as different environmental drivers associated with variation in weight. The lack of general patterns for a given species at a continental scale suggest that detailed knowledge regarding the way climate affects local populations is often necessary to successfully predict climate impact. We caution against extrapolation of results from localized climate,population studies to broad spatial scales. [source]


Examining the total arrival distribution of migratory birds

GLOBAL CHANGE BIOLOGY, Issue 1 2005
T. H. Sparks
Abstract This paper reports on the total distribution of spring migration timing of willow warbler, chiffchaff and pied flycatcher at locations in the UK, Germany, Russia and Finland. This is the first time that high-quality data based on known-effort monitoring has been examined on a continental scale. First arrival dates, commonly reported in the literature, were positively correlated with mean arrival dates although they would not make good predictors of the latter. At all locations, at least one aspect of the arrival distribution of each species had got significantly earlier in recent years. The trend towards earliness was associated with warmer local temperatures and more positive winter North Atlantic Oscillation index. In years that were early, the arrival distribution became more elongated and skewed. Researchers should now investigate the consequences of earlier arrival on current and future bird populations. [source]


Small mammal (rodents and lagomorphs) European biogeography from the Late Oligocene to the mid Pliocene

GLOBAL ECOLOGY, Issue 4 2007
Olivier Maridet
ABSTRACT Aim, To analyse the fossil species assemblages of rodents and lagomorphs from the European Neogene in order to assess what factors control small mammal biogeography at a deep-time evolutionary time-scale. Location, Western Europe: 626 fossil-bearing localities located within 31 regions and distributed among 18 successive biochronological units ranging from c. 27 Ma (million years ago; Late Oligocene) to c. 3 Ma (mid Pliocene). Methods, Taxonomically homogenized pooled regional assemblages are compared using the Raup and Crick index of faunal similarity; then, the inferred similarity matrices are visualized as neighbour-joining trees and by projecting the statistically significant interregional similarities and dissimilarities onto palaeogeographical maps. The inferred biogeographical patterns are analysed and discussed in the light of known palaeogeographical and palaeoclimatic events. Results, Successive time intervals with distinct biogeographical contexts are identified. Prior to c. 18 Ma (Late Oligocene and Early Miocene), a relative faunal homogeneity (high interregional connectivity) is observed all over Europe, a time when major geographical barriers and a weak climatic gradient are known. Then, from the beginning of the Middle Miocene onwards, the biogeography is marked by a significant decrease in interregional faunal affinities which matches a drastic global climatic degradation and leads, in the Late Miocene (c. 11 Ma), to a marked latitudinal pattern of small mammal distribution. In spite of a short rehomogenization around the Miocene/Pliocene boundary (6,4 Ma), the biogeography of small mammals in the mid Pliocene (c. 3 Ma) finally closely reflects the extant situation. Main conclusions, The resulting biogeographical evolutionary scheme indicates that the extant endemic situation has deep historical roots corresponding to global tectonic and climatic events acting as primary drivers of long-term changes. The correlation of biogeographical events with climatic changes emphasizes the prevalent role of the climate over geography in generating heterogeneous biogeographical patterns at the continental scale. [source]


Leaf litter nitrogen concentration as related to climatic factors in Eurasian forests

GLOBAL ECOLOGY, Issue 5 2006
Chunjiang Liu
ABSTRACT Aim, The aim of this study is to determine the patterns of nitrogen (N) concentrations in leaf litter of forest trees as functions of climatic factors, annual average temperature (Temp, °C) and annual precipitation (Precip, dm) and of forest type (coniferous vs. broadleaf, deciduous vs. evergreen, Pinus, etc.). Location, The review was conducted using data from studies across the Eurasian continent. Methods, Leaf litter N concentration was compiled from 204 sets of published data (81 sets from coniferous and 123 from broadleaf forests in Eurasia). We explored the relationships between leaf litter N concentration and Temp and Precip by means of regression analysis. Leaf litter data from N2 -fixing species were excluded from the analysis. Results, Over the Eurasian continent, leaf litter N concentration increased with increasing Temp and Precip within functional groups such as conifers, broadleaf, deciduous, evergreen and the genus Pinus. There were highly significant linear relationships between ln(N) and Temp and Precip (P < 0.001) for all available data combined, as well as for coniferous trees, broadleaf trees, deciduous trees, evergreen trees and Pinus separately. With both Temp and Precip as independent variables in multiple regression equations, the adjusted coefficient of determination () was evidently higher than in simple regressions with either Temp or Precip as independent variable. Standardized regression coefficients showed that Temp had a larger impact than Precip on litter N concentration for all groups except evergreens. The impact of temperature was particularly strong for Pinus. Conclusions, The relationship between leaf litter N concentration and temperature and precipitation can be well described with simple or multiple linear regression equations for forests over Eurasia. In the context of global warming, these regression equations are useful for a better understanding and modelling of the effects of geographical and climatic factors on leaf litter N at a regional and continental scale. [source]


Variation in litterfall-climate relationships between coniferous and broadleaf forests in Eurasia

GLOBAL ECOLOGY, Issue 2 2004
Chunjiang Liu
ABSTRACT Aim, The objectives of this study were to determine the relationships between climatic factors and litterfall in coniferous and broadleaf forests in Eurasia and to explore the difference in litterfall between coniferous and broadleaf forests as related to climate at a continental scale. Location, We have used data from across Eurasia. Methods, The relationships between litterfall and climatic factors were examined using linear regression analysis of a compilation of published data from coniferous and broadleaf forests in Eurasia. Results, The relationships between litterfall and climatic factors show that in the temperate, subtropical, and tropical areas, broadleaf forests had higher litterfall than coniferous ones, whilst the opposite was found for boreal forests. Combining all climatic zones, a multiple regression analysis using annual mean temperature (T) and annual precipitation (P) as independent variables gave an adjusted R2 () of 0.272 for total litterfall in coniferous forests (n = 199, P < 0.001), 0.498 for broadleaf litterfall (n = 240, P < 0.001), and 0.535 for combined coniferous and broadleaf litterfall (n = 439, P < 0.001). The linear models for broadleaf stands have significantly higher coefficients for T and P than those for coniferous ones but the intercepts were similar. Thus, litterfall in broadleaf forests increased faster with T and P than that in coniferous forests. Further, a transformation of temperature and precipitation to relative units showed that a relative-unit change in T had a larger impact than P on total litterfall in broadleaf forests. The results indicate that at a continental scale, climatic controls over litterfall differ between coniferous and broadleaf forests. Conclusions, A relative unit change in annual mean temperature has a greater effect on litterfall compared to the same change in annual precipitation across the Eurasian forests. Further, the higher response to T for broadleaf forests indicates a difference in climate control between coniferous and broadleaf forests at a continental scale, and consequently different litterfall responses to climate change. [source]


Where within a geographical range do species survive best?

INSECT CONSERVATION AND DIVERSITY, Issue 1 2008
A matter of scale
Abstract., 1Opinions differ as to whether declining species are most likely to survive in central or peripheral parts of their distributions. The former pattern is likely to be driven by high extinction risks in peripheral areas; the latter by gradients of extinction risk. 2At a continental scale of analysis, the declining butterfly Euphydryas aurinia survived best in southern and eastern countries within Europe. This was statistically associated with geographical variation in agricultural intensification. At this scale of analysis, there was a gradient of survival, caused by a gradient of agricultural intensification. 3Within England and Wales, survival was greatest in population concentrations, or core areas; that is in 10-km grid squares that were surrounded by other 10-km grid squares that also contained populations of E. aurinia. In the English county of Dorset, populations were also most likely to be found in core areas; that is in habitat patches that were close to other populated habitat patches. 4In this system, there is support for two patterns of decline. At a coarse scale, there is a geographical gradient of habitat degradation, associated with agricultural intensification. But within a region where decline has taken place, populations survive best in core areas, where aggregations of habitat support viable metapopulation dynamics. 5Large-scale geographical patterns of decline towards the periphery (or other locations within) the distribution of a species do not negate the validity of conservation strategies based on core-margin population dynamic principles. Core areas within each country or region represent appropriate targets for conservation action. [source]


Continental-scale phenology: warming and chilling

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 11 2010
Mark D. Schwartz
Abstract With abundant evidence of recent climate warming, most vegetation studies have concentrated on its direct impacts, such as modifications to seasonal plant and animal life cycle events (phenology). The most common examples are indications of earlier onset of spring plant growth and delayed onset of autumn senescence. However, less attention has been paid to the implications of continued warming for plant species' chilling requirements. Many woody plants that grow in temperate areas require a certain amount of winter chilling to break dormancy and prepare to respond to springtime warming. Thus, a comprehensive assessment of plant species' responses to warming must also include the potential impacts of insufficient chilling. When collected at continental scale, plant species phenological data can be used to extract information relating to the combined impacts of warming and reduced chilling on plant species physiology. In this brief study, we demonstrate that common lilac first leaf and first bloom phenology (collected from multiple locations in the western United States and matched with air temperature records) can estimate the species' chilling requirement (1748 chilling hours, base 7.2 °C) and highlight the changing impact of warming on the plant's phenological response in light of that requirement. Specifically, when chilling is above the requirement, lilac first leaf/first bloom dates advance at a rate of , 5.0/, 4.2 days per 100-h reduction in chilling accumulation, while when chilling is below the requirement, they advance at a much reduced rate of , 1.6/, 2.2 days per 100-h reduction. With continental-scale phenology data being collected by the USA National Phenology Network (http://www.usanpn.org), these and more complex ecological questions related to warming and chilling can be addressed for other plant species in future studies. Copyright © 2009 Royal Meteorological Society [source]


Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish assemblages

JOURNAL OF APPLIED ECOLOGY, Issue 1 2006
D. PONT
Summary 1The need for sensitive biological measures of aquatic ecosystem integrity applicable at large spatial scales has been highlighted by the implementation of the European Water Framework Directive. Using fish communities as indicators of habitat quality in rivers, we developed a multi-metric index to test our capacity to (i) correctly model a variety of metrics based on assemblage structure and functions, and (ii) discriminate between the effects of natural vs. human-induced environmental variability at a continental scale. 2Information was collected for 5252 sites distributed among 1843 European rivers. Data included variables on fish assemblage structure, local environmental variables, sampling strategy and a river basin classification based on native fish fauna similarities accounting for regional effects on local assemblage structure. Fifty-eight metrics reflecting different aspects of fish assemblage structure and function were selected from the available literature and tested for their potential to indicate habitat degradation. 3To quantify possible deviation from a ,reference condition' for any given site, we first established and validated statistical models describing metric responses to natural environmental variability in the absence of any significant human disturbance. We considered that the residual distributions of these models described the response range of each metric, whatever the natural environmental variability. After testing the sensitivity of these residuals to a gradient of human disturbance, we finally selected 10 metrics that were combined to obtain a European fish assemblage index. We demonstrated that (i) when considering only minimally disturbed sites the index remains invariant, regardless of environmental variability, and (ii) the index shows a significant negative linear response to a gradient of human disturbance. 4Synthesis and applications. In this reference condition modelling approach, by including a more complete description of environmental variability at both local and regional scales it was possible to develop a novel fish biotic index transferable between catchments at the European scale. The use of functional metrics based on biological attributes of species instead of metrics based on species themselves reduced the index sensitivity to the variability of fish fauna across different biogeographical areas. [source]


Predicting plant species' responses to grazing

JOURNAL OF APPLIED ECOLOGY, Issue 5 2001
Peter A. Vesk
Summary 1The aim of this study was to identify whether plant species show consistent responses to livestock grazing. The analyses were based on 35 published studies from Australian rangelands providing 55 species response lists. The primary data set comprised 1554 responses from 829 species. 2Eight-hundred and twenty-nine species were categorized as increasers, decreasers or neutral under grazing. Of 324 species that occurred in at least two response lists, 133 (41%) responded inconsistently, increasing at least once and decreasing at least once. While 59% of species responded consistently, these results suggest that our ability to predict vegetation change under grazing is limited. 3Particular species were not inherently more or less consistent. Rather, as species occurred in more trials, the likelihood of at least one opposite response increased; no species that occurred at least eight times was wholly consistent. A binomial model indicated that the probability of an opposite response, across all species, was 0·275. 4Contrary responses within species must result from context rather than from species' traits. Species were more likely to decrease in response to grazing at lower rainfall than at higher rainfall. Forbs tended to increase under grazing at sites where wet seasons were cooler. Changing the grazing animal was weakly correlated with change in response direction, although not enough for it to be useful for manipulating pasture composition. We found little support for ideas that different responses within species are due to differences in alternative forage available, or due to non-linearity of response to grazing intensity. 5At present it appears we can predict species response direction about three-quarters of the time, at a continental scale. This represents an upper limit of the reliability of prediction based on species' traits alone. Presently we do not know what aspects of the context might allow us to predict reliably the remaining one-quarter of responses. [source]


Exploring the Afromontane centre of endemism: Kniphofia Moench (Asphodelaceae) as a floristic indicator

JOURNAL OF BIOGEOGRAPHY, Issue 12 2008
Syd Ramdhani
Abstract Aim, The genus Kniphofia contains 71 species with an African,Malagasy distribution, including one species from Yemen. The genus has a general Afromontane distribution. Here we explore whether Kniphofia is a floristic indicator of the Afromontane centre of endemism and diversity. The South Africa Centre of diversity and endemism was explored in greater detail to understand biogeographical patterns. Location, Africa, Afromontane Region, southern Africa, Madagascar and Yemen. Methods, Diversity and endemism for the genus were examined at the continental scale using a chorological approach. Biogeographical patterns and endemism in the South Africa Centre were examined in greater detail using chorology, phenetics, parsimony analysis of endemicity (PAE) and mapping of range-restricted taxa. Results, Six centres of diversity were recovered, five of which are also centres of endemism. Eight subcentres of diversity are proposed, of which only two are considered subcentres of endemism. The South Africa Centre is the most species-rich region and the largest centre of endemism for Kniphofia. The phenetic analysis of the South Africa Centre at the full degree square scale recovered three biogeographical areas that correspond with the subcentres obtained from the chorological analysis. The PAE (at the full degree square scale) and the mapping of range-restricted taxa recovered two and six areas of endemism (AOEs), respectively. These latter two approaches produced results of limited value, possibly as a result of inadequate collecting of Kniphofia species. Only two AOEs were identified by PAE and these are embedded within two of the six AOEs recovered by the mapping of range-restricted taxa. All the above AOEs are within the three subcentres found by chorological and phenetic analysis (at the full degree square scale) for the South Africa Centre. Main conclusions, The centres for Kniphofia broadly correspond to the Afromontane regional mountain systems, but with some notable differences. We regard Kniphofia as a floristic indicator of the Afromontane Region sensu lato. In southern Africa, the phenetic approach at the full-degree scale retrieved areas that correlate well with those obtained by the chorological approach. [source]


Phylogeographic structuring and volant mammals: the case of the pallid bat (Antrozous pallidus)

JOURNAL OF BIOGEOGRAPHY, Issue 7 2007
Sarah E. Weyandt
Abstract Aim, To examine the phylogeographic pattern of a volant mammal at the continental scale. The pallid bat (Antrozous pallidus) was chosen because it ranges across a zone of well-studied biotic assemblages, namely the warm deserts of North America. Location, The western half of North America, with sites in Mexico, the United States, and Canada. Methods, PCR amplification and sequencing of the mitochondrial control region was performed on 194 pallid bats from 36 localities. Additional sequences at the cytochrome- b locus were generated for representatives of each control-region haplotype. modeltest was used to determine the best set of parameters to describe each data set, which were incorporated into analyses using paup*. Statistical parsimony and measurements of population differentiation (amova, FST) were also used to examine patterns of genetic diversity in pallid bats. Results, We detected three major lineages in the mitochondrial DNA of pallid bats collected across the species range. These three major clades have completely non-overlapping geographic ranges. Only 6 of 80 control-region haplotypes were found at more than a single locality, and sequences at the more conserved cytochrome- b locus revealed 37 haplotypes. Statistical parsimony generated three unlinked networks that correspond exactly to clades defined by the distance-based analysis. On average there was c. 2% divergence for the combined mitochondrial sequences within each of the three major clades and c. 7% divergence between each pair of clades. Molecular clocks date divergence between the major clades at more than one million years, on average, using the faster rates, and at more than three million years using more conservative rates of evolution. Main conclusions, Divergent haplotypic lineages with allopatric distributions suggest that the pallid bat has responded to evolutionary pressures in a manner consistent with other taxa of the American southwest. These results extend the conclusions of earlier studies that found the genetic structuring of populations of some bat species to show that a widespread volant species may comprise a set of geographically replacing monophyletic lineages. Haplotypes were usually restricted to single localities, and the clade showing geographic affinities to the Sonoran Desert contained greater diversity than did clades to the east and west. While faster molecular clocks would allow for glacial cycles of the Pleistocene as plausible agents of diversification of pallid bats, evidence from co-distributed taxa suggests support for older events being responsible for the initial divergence among clades. [source]


The forests of presettlement New England, USA: spatial and compositional patterns based on town proprietor surveys

JOURNAL OF BIOGEOGRAPHY, Issue 10-11 2002
Charles V. Cogbill
Abstract Aim, This study uses the combination of presettlement tree surveys and spatial analysis to produce an empirical reconstruction of tree species abundance and vegetation units at different scales in the original landscape. Location, The New England study area extends across eight physiographic sections, from the Appalachian Mountains to the Atlantic Coastal Plain. The data are drawn from 389 original towns in what are now seven states in the north-eastern United States. These towns have early land division records which document the witness trees growing in the town before European settlement (c. seventeenth to eighteenth century ad). Methods, Records of witness trees from presettlement surveys were collated from towns throughout the study area (1.3 × 105 km2). Tree abundance was averaged over town-wide samples of multiple forest types, integrating proportions of taxa at a local scale (102 km2). These data were summarized into genus groups over the sample towns, which were then mapped [geographical information system (GIS)], classified (Cluster Analysis) and ordinated [detrended correspondence analysis (DCA)]. Modern climatic and topographic variables were also derived from GIS analyses for each town and all town attributes were quantitatively compared. Distributions of both individual species and vegetation units were analysed and displayed for spatial analysis of vegetation structure. Results, The tally of 153,932 individual tree citations show a dominant latitudinal trend in the vegetation. Spatial patterns are concisely displayed as pie charts of genus composition arrayed on sampled towns. Detailed interpolated frequency surfaces show spatial patterns of range and abundance of the dominant taxa. Oak, spruce, hickory and chestnut reach distinctive range limits within the study area. Eight vegetation clusters are distinguished. The northern vegetation is a continuous geographical sequence typified by beech while the southern vegetation is an amorphous group typified by oak. Main conclusions, The wealth of information recorded in the New England town presettlement surveys is an ideal data base to elucidate the natural patterns of vegetation over an extensive spatial area. The timing, town-wide scale, expansive coverage, quantitative enumeration and unbiased estimates are critical advantages of proprietor lotting surveys in determining original tree distributions. This historical,geographical approach produces a vivid reconstruction of the natural vegetation and species distributions as portrayed on maps. The spatial, vegetational and environmental patterns all demonstrate a distinct ,tension zone' separating ,northern hardwood' and ,central hardwood' towns. The presettlement northern hardwood forests, absolutely dominated by beech, forms a continuum responding to a complex climatic gradient of altitude and latitude. The oak forests to the south are distinguished by non-zonal units, probably affected by fire. Although at the continental scale, the forests seem to be a broad transition, at a finer scale they respond to topography such as the major valleys or the northern mountains. This study resets some preconceptions about the original forest, such as the overestimation of the role of pine, hemlock and chestnut and the underestimation of the distinctiveness of the tension zone. Most importantly, the forests of the past and their empirical description provide a basis for many ecological, educational and management applications today. [source]


Ecological biogeography of North American mammals: species density and ecological structure in relation to environmental gradients

JOURNAL OF BIOGEOGRAPHY, Issue 6 2000
Catherine Badgley
Abstract Aim, To evaluate the relationship of climate and physiography to species density and ecological diversity of North American mammals. Location, North America, including Mexico and Central America. Methods, Species density, size structure and trophic structure of mammalian faunas and nine environmental variables were documented for quadrats covering the entire continent. Spatial autocorrelation of species density and the environmental variables illustrated differences in their spatial structure at the continental scale. We used principal component analysis to reduce the dimensionality of the climatic variables, linear multiple regression to determine which environmental variables best predict species density for the continent and several regions of the continent, and canonical ordination to evaluate how well the environmental variables predict ecological structure of mammalian faunas over North America. Results, In the best regression model, five environmental variables, representing seasonal extremes of temperature, annual energy and moisture, and elevation, predicted 88% of the variation in species density for the whole continent. Among different regions of North America, the environmental variables that predicted species density vary. Changes in the size and trophic structure of mammalian faunas accompany changes in species density. Redundancy analysis demonstrated that environmental variables representing winter temperature, frostfree period, potential and actual evapotranspiration, and elevation account for 77% of the variation in ecological structure. Main conclusions, The latitudinal gradient in mammalian species density is strong, but most of it is explained by variation in the environmental variables. Each ecological category peaks in species richness under particular environmental conditions. The changes of greatest magnitude involve the smallest size categories (< 10 g, 11,100 g), aerial insectivores and frugivores. Species in these categories, mostly bats, increase along a gradient of decreasing winter temperature and increasing annual moisture and frostfree period, trends correlated with latitude. At the opposite end of this gradient, species in the largest size category (101,1000 kg) increase in frequency. Species in size categories 3 (101,1000 g), 5 (11,100 kg) and 6 (101,1000 kg), herbivores, and granivores increase along a longitudinal gradient of increasing annual potential evapotranspiration and elevation. Much of the spatial pattern is consistent with ecological sorting of species ranges along environmental gradients, but differential rates of speciation and extinction also may have shaped the ecological diversity of extant North American mammals. [source]


Using the extended quarter degree grid cell system to unify mapping and sharing of biodiversity data

AFRICAN JOURNAL OF ECOLOGY, Issue 3 2009
R. Larsen
Abstract Information on the distribution of animal populations is essential for conservation planning and management. Unfortunately, shared coordinate-level data may have the potential to compromise sensitive species and generalized data are often shared instead to facilitate knowledge discovery and communication regarding species distributions. Sharing of generalized data is, unfortunately, often ad hoc and lacks scalable conventions that permit consistent sharing at larger scales and varying resolutions. One common convention in African applications is the Quarter Degree Grid Cells (QDGC) system. However, the current standard does not support unique references across the Equator and Prime Meridian. We present a method for extending QDGC nomenclature to support unique references at a continental scale for Africa. The extended QDGC provides an instrument for sharing generalized biodiversity data where laws, regulations or other formal considerations prevent or prohibit distribution of coordinate-level information. We recommend how the extended QDGC may be used as a standard, scalable solution for exchange of biodiversity information through development of tools for the conversion and presentation of multi-scale data at a variety of resolutions. In doing so, the extended QDGC represents an important alternative to existing approaches for generalized mapping and can help planners and researchers address conservation issues more efficiently. Résumé L'information sur la distribution des populations animales est essentielle pour la planification de la conservation et la gestion. Malheureusement, les données partagées au niveau des coordonnées risquent de compromettre les espèces sensibles, et les données généralisées sont souvent partagées pour faciliter la découverte et la communication des connaissances concernant la distribution des espèces. Le partage de données généralisées est, malheureusement, souvent opportuniste et manque de conventions mesurables qui permettraient le partage cohérent sur une plus grande échelle et à des résolutions variées. Une convention commune pour des applications africaines est le système de Quarter Degree Grid Cells (QDGC). Cependant, la norme actuelle ne supporte pas l'emploi des références uniques à travers l'Equateur et le premier méridien. Nous présentons une méthode pour étendre la nomenclature QDGC pour soutenir l'adoption de références uniques à l'échelle du continent, en Afrique. Le QDGC étendu fournit un instrument pour partager les données généralisées sur la biodiversité là où les lois, les réglementations et les autres considérations formelles empêchent ou interdisent la distribution de l'information au niveau coordonné. Nous disons dans quelle mesure le QDGC étendu peut être utilisé comme norme, une solution mesurable pour l'échange d'informations sur la biodiversité grâce au développement d'instruments pour la conversion et la présentation de données àéchelle multiple à des résolutions diverses. Ce faisant, le QDGC étendu représente une alternative importante aux approches existantes pour la cartographie généralisée et il peut aider les planificateurs et les chercheurs à traiter les problèmes de conservation plus efficacement. [source]


Tree species range shifts at a continental scale: new predictive insights from a process-based model

JOURNAL OF ECOLOGY, Issue 4 2008
Xavier Morin
Summary 1Climate change has already caused distribution shifts in many species, and climate predictions strongly suggest that these will accelerate in the future. Obtaining reliable predictions of species range shifts under climate change is thus currently one of the most crucial challenges for both ecologists and stakeholders. 2Here we simulate the distributions of 16 North American tree species at a continental scale for the 21st century according to two IPCC storylines, using a process-based species distribution model that for the first time allows identification of the possible causes of distribution change. 3Our projections show local extinctions in the south of species ranges (21% of the present distribution, on average), and colonizations of new habitats in the north, though these are limited by dispersal ability for most species. Areas undergoing local extinctions are slightly larger under climate scenario A2 (+3.2 C, +22% on average) than B2 (+1.0 C, +19% on average). This small difference is caused by nonlinear responses of processes (leaves and flowers phenological processes in particular) to temperature. We also show that local extinction may proceed at a slower rate than forecasted so far. 4Although predicted distribution shifts are very species-specific, we show that the loss of habitats southward will be mostly due to increased drought mortality and decreased reproductive success, while northward colonizations will be primarily promoted by increased probability of fruit ripening and flower frost survival. 5Synthesis. Our results show that different species will not face the same risks due to climate change, because their responses to climate differ as well as their dispersal rate. Focusing on processes, our study therefore tempers the alarming conclusions of widely used niche-based models about biodiversity loss, mainly because our predictions take into account the local adaptation and trait plasticity to climate of the species. [source]


Cryptic diversification in ancient asexuals: evidence from the bdelloid rotifer Philodina flaviceps

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2008
D. FONTANETO
Abstract Bdelloid rotifers, darwinulid ostracods and some oribatid mites have been called ,ancient asexuals' as they speciated and survived over long-term evolutionary timescale without sexual recombination. Data on their genetic diversification are contrasting: within-species diversification is present mostly at a continental scale in a parthenogenetic oribatid mite, whereas almost no genetic diversification at all seems to occur within darwinulid ostracod species. Strangely enough, no clear data for bdelloid rotifers are available so far. In this paper, we analyse partial COI mtDNA sequences to show that a bdelloid rotifer, Philodina flaviceps, so far considered a single traditional morphological species, has actually been able to diversify into at least nine distinct evolutionary entities, with genetic distances between lineages comparable with those between different traditional species within the same genus. We discovered that local coexistence of such different independent lineages is very common: up to four lineages were found in a same stream, and up to three in a single moss sample of 5 cm2. In contrast to the large-scale geographic pattern that has recently been reported in the oribatid mite, the spatial distribution of the bdelloid lineages provided evidence of micro-phylogeographic patterns. If the mtDNA diversity indicates that the lineages are independent and represent sympatric cryptic species within P. flaviceps, then the actual bdelloid diversity can be expected to be much greater than that recognized today. [source]


Contribution of the largest events to suspended sediment transport across the USA

LAND DEGRADATION AND DEVELOPMENT, Issue 2 2010
J. C. Gonzalez-Hidalgo
Abstract This work analyses the contribution of the largest events to suspended sediment transport on the continental scale. The analysis is based on the United States Geological Survey (USGS) Suspended Sediment and Ancillary database. Data were obtained from 1314 catchments, comprising more than 2,500,000 daily events. The total number of days in the dataset amounts to 10,000 years. Catchments are of different sizes and belong to distinct climatic environments; they are distributed for the analysis according to USA hydrological divisions (HDs). The main objective of the research is to examine the effect of the n -largest event on the total suspended sediment load over recorded periods, and to discuss different behaviour between HDs. To accomplish this, the daily events at each catchment are ranked by magnitude, and then the percentage represented by the n -largest event (e.g. 3-largest, 5-largest, 10-largest, 15-largest, 20-largest, 25-largest) is calculated from the total accumulated load. Results indicate that suspended sediment transported by the 25-largest events represents on average more than 50,per cent of the total load. The California HD, mostly under Mediterranean climatic conditions, accounts for the highest percentage of sediment transport across conterminous USA, whatever n -largest daily events are selected. There, the 3-largest events contribute, on average, 38,per cent of the total sediment load, the 10-largest events represent 61,per cent and the 25-largest events produce more than 76,per cent of the total sediment transport. Overall, the contribution of largest daily events seems not to depend on the climatic conditions in small catchments (<100,km2) and, in addition, the percentage of suspended sediment increases over all HDs, while, at the same time, the catchment size decreases. Finally, we discuss differences between catchments across the USA, according to climatic and historical (i.e. land use) factors. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Genetic discontinuities and disequilibria in recently established populations of the plant pathogenic fungus Mycosphaerella fijiensis

MOLECULAR ECOLOGY, Issue 18 2010
F. HALKETT
Abstract Dispersal processes of fungal plant pathogens can be inferred from analysis of spatial genetic structures resulting from recent range expansion. The relative importance of long-distance dispersal (LDD) events vs. gradual dispersal in shaping population structures depends on the geographical scale considered. The fungus Mycosphaerella fijiensis, pathogenic on banana, is an example of a recent worldwide epidemic. Founder effects in this species were detected at both global and continental scale, suggesting stochastic spread of the disease through LDD events. In this study, we analysed the structure of M. fijiensis populations in two recently (,1979,1980) colonized areas in Costa Rica and Cameroon. Isolates collected in 10,15 sites distributed along a ,250- to 300- km-long transect in each country were analysed using 19 microsatellite markers. We detected low-to-moderate genetic differentiation among populations in both countries and isolation by distance in Cameroon. Combined with historical data, these observations suggest continuous range expansion at the scale of banana-production area through gradual dispersal of spores. However, both countries displayed specific additional signatures of colonization: a sharp discontinuity in gene frequencies was observed along the Cameroon transect, while the Costa Rican populations seemed not yet to have reached genetic equilibrium. These differences in the genetic characteristics of M. fijiensis populations in two recently colonized areas are discussed in the light of historical data on disease spread and ecological data on landscape features. [source]


Climate and habitat barriers to dispersal in the highly mobile grey wolf

MOLECULAR ECOLOGY, Issue 8 2004
ELI GEFFEN
Abstract We reanalysed published data to evaluate whether climate and habitat are barriers to dispersal in one of the most mobile and widely distributed mammals, the grey wolf (Canis lupus). Distance-based redundancy analysis (dbRDA) was used to examine the amount of variation in genetic distances that could be explained by an array of environmental factors, including geographical distance. Patterns in genetic variation were also examined using MDS plots among populations and relationships between genetic structure and individual environmental variables were further explored using the BIOENV procedure. We found that, contrary to a previous report, a pattern of isolation with distance is evident on a continental scale in the North American wolf population. This pattern is apparently related to climate and habitat. Specifically, vegetation types appear to play a role in the genetic dissimilarities among populations. When we controlled for the effect of spatial variation, climate was still associated with genetic distance. Further, partitioning of geographical distances into latitudinal and longitudinal axes revealed that the east,west gradient had the strongest relationship with genetic distance. We suggest two possible mechanisms by which environmental conditions may influence the dispersal decisions made by wolves. [source]


The comparative phylogeography of Neotropical mammals: patterns of intraspecific mitochondrial DNA variation among bats contrasted to nonvolant small mammals

MOLECULAR ECOLOGY, Issue 9 2000
A. D. Ditchfield
Abstract The major aim of this study was to compare the phylogeographic patterns of codistributed bats and small nonvolant Neotropical mammals. Cytochrome b sequences (mitochondrial DNA) were obtained for a total of 275 bats representing 17 species. The tissue samples were collected in coastal Brazil, and were available from Mexico and the Guyana. The study concentrates on four species (Artibeus lituratus, Carollia perspicillata, Sturnira lilium and Glossophaga soricina) which were well represented. The other 13 species were sequenced to test the generality of the patterns observed. In general, sequence divergence values within species were low, with most bat species presenting less than 4% average sequence divergence, and usually between 1 and 2.5%. Clades of highly similar haplotypes enjoyed broad distribution on a continental scale. These clades were not usually geographically structured, and at a given locality the number of haplotypes was high (8,10). As distance increased, some moderately divergent clades were found, although the levels of divergence were low. This suggests a geographical effect that varied depending on species and scale. Small nonvolant mammals almost invariably have high levels of sequence divergence (> 10%) for cytochrome b over much shorter distances (< 1000 km). The grain of intraspecific variation found in small nonvolant mammals is much finer than in bats. Low levels of geographical structuring cannot be attributed to a slower evolutionary rate of bat DNA in relation to other mammalian taxa. The phylogeographic pattern of bats contrasts sharply with the pattern found for Neotropical rodents and marsupials. [source]


Reconstruction of an atmospheric tracer source using the principle of maximum entropy.

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 610 2005
I: Theory
Abstract Over recent years, tracing back sources of chemical species dispersed through the atmosphere has been of considerable importance, with an emphasis on increasing the precision of the source resolution. This need stems from many problems: being able to estimate the emissions of pollutants; spotting the source of radionuclides; evaluating diffuse gas fluxes; etc. We study the high-resolution retrieval on a continental scale of the source of a passive atmospheric tracer, given a set of concentration measurements. In the first of this two-part paper, we lay out and develop theoretical grounds for the reconstruction. Our approach is based on the principle of maximum entropy on the mean. It offers a general framework in which the information input prior to the inversion is used in a flexible and controlled way. The inversion is shown to be equivalent to the minimization of an optimal cost function, expressed in the dual space of observations. Examples of such cost functions are given for different priors of interest to the retrieval of an atmospheric tracer. In this respect, variational assimilation (4D-Var), as well as projection techniques, are obtained as biproducts of the method. The framework is enlarged to incorporate noisy data in the inversion scheme. Part II of this paper is devoted to the application and testing of these methods. Copyright © 2005 Royal Meteorological Society [source]


Reconstruction of an atmospheric tracer source using the principle of maximum entropy.

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 610 2005
II: Applications
Abstract A new method of performing the source inversion of a passive tracer at continental scale was proposed in Part I of this two-part paper. The method made use of prior information, general or specific (depending on the situation), to perform a better reconstruction using only the prior information and the field measurements of the tracer. In this paper the method is tested on its first applications. It is used on several test examples, using the meteorological conditions of the European Joint Research Centre ETEX-I campaign. The retrieval of a temporal profile of emission from a source whose location is known is studied before testing the method on a full reconstruction of the space,time profile of the source. Synthetic, but also real-measurement, inversions are tested, thanks to the extension of the formalism to noisy data. Copyright © 2005 Royal Meteorological Society [source]


Does land-use change affect biodiversity dynamics at a macroecological scale?

ANIMAL CONSERVATION, Issue 2 2009
A case study of birds over the past 20 years in Japan
Abstract Because the effects of land-use change on biodiversity have primarily been examined at or below the regional scale, it remains unclear whether such effects scale up to the macroecological scale (i.e. nationwide or continental scale). In Japan, forests have become more mature since the cessation of most forestry efforts in the 1970s. At a nationwide scale, this forest maturation may lead to reductions in the abundance of species that depend on early successional forests (early successional species) and increases in the abundance of species that depend on mature forests (mature forest species). Japan has met its high demand for wood through imports from South-east Asia, resulting in deforestation there. Therefore, the abundance of mature forest species that migrate long distances to overwinter in South-east Asia may decrease. We examined changes in the range sizes of birds in Japan over the past 20 years using the living planet index (LPI). The LPI indicated that the range sizes of early successional species decreased. For mature forest species, the range sizes of long-distance migrants decreased, whereas those of short-distance migrants and residents increased. Our predictions were generally supported. Our results indicate that the effects of land-use change extend to the macroecological scale and that such changes in one country can affect the biodiversity dynamics in other countries. Forest maturation in Japan and concomitant deforestation in South-east Asia have been caused by internationally coupled socioeconomic processes. Therefore, biodiversity conservation at the macroecological scale must consider the role of land use, and such efforts will require both international and socioeconomic perspectives. [source]


Biogeography of Australian saltmarsh plants

AUSTRAL ECOLOGY, Issue 8 2009
NEIL SAINTILAN
Abstract The paper seeks to define patterns in the distribution of Australian saltmarsh plants over a continental scale, and test for associations with environmental variables. The distribution of 93 species of Australian saltmarsh plants was documented from the records of the Australian Virtual Herbarium and published reports. The Interim Bioregionalisation of Australia provided a spatial unit for the analysis of patterns of diversity. Saltmarsh diversity was shown to be strongly correlated with latitude and temperature. Multivariate routines including cluster analysis demonstrated consistent geographic patterns in species assemblages. The primary distinction was found to be a north-south divide dissecting the continent at the latitude of 23° south, separating a species-rich southern flora from a species-poor northern flora. Subsequent dissimilarities were defined between coastlines of contrasting orientation. Mean minimum temperature was found to explain nearly 80% of variability in saltmarsh species diversity between bioregions, with diversity inversely related to temperature. [source]


DISCOVERING EXCEPTIONAL DIVERSIFICATIONS AT CONTINENTAL SCALES: THE CASE OF THE ENDEMIC FAMILIES OF NEOTROPICAL SUBOSCINE PASSERINES

EVOLUTION, Issue 7 2010
Santiago Claramunt
The study of continental adaptive radiations has lagged behind research on their island counterparts in part because the mere identification of adaptive radiations is more challenging at continental scales. Here, I demonstrate a new method based on simulations for discovering clades that show exceptionally high phenotypic diversity. The method does not require a phylogeny but accounts for differences in age and species richness among clades and incorporates effects of the phylogenetic structure of data. In addition, I developed a new multivariate measure of phenotypic diversity, which has the advantage over other measures of disparity in that it takes covariation into account. I applied these methods to a clade of endemic Neotropical suboscine passerines, within which the family Furnariidae has been considered an adaptive radiation. I found that the families Thamnophilidae, Furnariidae, and Dendrocolaptidae have experienced a higher rate of cladogenesis than have other clades. Although Thamnophilidae is exceptionally diverse in body size, only Furnariidae and Dendrocolaptidae are exceptionally diverse in shape. The combination of high rates of cladogenesis and high morphometric diversity in traits related to feeding and locomotion suggest that the clade Furnariidae-Dendrocolaptidae represent an authentic continental adaptive radiation. [source]