Conterminous United States (conterminous + united_states)

Distribution by Scientific Domains


Selected Abstracts


ARSENIC IN THE SHALLOW GROUND WATERS OF CONTERMINOUS UNITED STATES: ASSESSMENT, HEALTH RISKS, AND COSTS FOR MCL COMPLIANCE,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 2 2006
Navin Kumar C. Twarakavi
ABSTRACT: A methodology consisting of ordinal logistic regression (OLR) is used to predict the probability of occurrence of arsenic concentrations in different threshold limits in shallow ground waters of the conterminous United States (CONUS) subject to a set of influencing variables. The analysis considered a number of maximum contaminant level (MCL) options as threshold values to estimate the probabilities of occurrence of arsenic in ranges defined by a given MCL of 3, 5, 10, 20, and 50 ,g/l and a detection limit of 1 ,g/l. The fit between the observed and predicted probability of occurrence was around 83 percent for all MCL options. The estimated probabilities were used to estimate the median background concentration of arsenic in the CONUS. The shallow ground water of the western United States is more vulnerable than the eastern United States. Arizona, Utah, Nevada, and California in particular are hotspots for arsenic contamination. The risk assessment showed that counties in southern California, Arizona, Florida, and Washington and a few others scattered throughout the CONUS face a high risk from arsenic exposure through untreated ground water consumption. A simple cost effectiveness analysis was performed to understand the household costs for MCL compliance in using arsenic contaminated ground water. The results showed that the current MCL of 10 ,g/l is a good compromise based on existing treatment technologies. [source]


The relationship between local and regional diatom richness is mediated by the local and regional environment

GLOBAL ECOLOGY, Issue 3 2009
Sophia I. Passy
ABSTRACT Aim, In this continental study, species richness at local (LSR) and regional (RSR) scales was correlated and examined as a function of stream (local) and watershed (regional) environment in an effort to elucidate what factors control diatom biodiversity across scales. Location, Conterminous United States. Methods, Data on diatom richness, stream conditions and watershed properties were generated by the US Geological Survey. In the present investigation, RSR was estimated as the total diatom richness in a hydrologic study unit and, together with stream and watershed characteristics, was included in stepwise multiple regressions of LSR. The unique and shared contributions of RSR, stream and watershed environment to the explained variance in LSR were determined by variance partitioning. RSR was regressed against stream and basin features averaged per study unit. Results, LSR responded most strongly to variability in stream manganese concentration and RSR. Other predictors included stream discharge and iron concentration, soil organic matter content and fertilization, and proportions of open water, barren land and forest in the watershed. Variance partitioning revealed that RSR had the lowest independent contribution to explained variance in LSR. Multiple regressions identified average stream iron concentration as the most important predictor of RSR. Main conclusions, Local micronutrient concentration was the major predictor of LSR, followed by RSR. Since average micronutrient supply in the region was the chief determinant of RSR, it is proposed that micronutrients had both a direct effect on LSR and an indirect effect through RSR. The same argument is extended to watershed features with an impact on stream trophic status, because of their substantial contributions to the explained variance in both LSR and RSR. Considering that the major proportion of LSR variance explained by RSR originated from the covariance of RSR with stream and watershed properties, it is concluded that the LSR,RSR relationship was mediated by the local and regional environment. [source]


Using a Geographic Information System to identify areas with potential for off-target pesticide exposure

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2006
Thomas G. Pfleeger
Abstract In many countries, numerous tests are required as part of the risk assessment process before chemical registration to protect human health and the environment from unintended effects of chemical releases. Most of these tests are not based on ecological or environmental relevance but, rather, on consistent performance in the laboratory. A conceptual approach based on Geographic Information System (GIS) technology has been developed to identify areas that are vulnerable to nontarget chemical exposure. This GIS-based approach uses wind speed, frequency of those winds, pesticide application rates, and spatial location of agricultural crops to identify areas with the highest potential for pesticide exposure. A test scenario based on an incident in Idaho (USA) was used to identify the relative magnitude of risk from off-target movement of herbicides to plants in the conterminous United States. This analysis indicated that the western portion of the Corn Belt, the central California valley, southeastern Washington, the Willamette Valley of Oregon, and agricultural areas bordering the Great Lakes are among those areas in the United States that appear to have the greatest potential for off-target movement of herbicides via drift. Agricultural areas, such as the Mississippi River Valley and the southeastern United States, appears to have less potential, possibly due to lower average wind speeds. Ecological risk assessments developed for pesticide registration would be improved by using response data from species common to high-risk areas instead of extrapolating test data from species unrelated to those areas with the highest potential for exposure. [source]


Carbon stored in human settlements: the conterminous United States

GLOBAL CHANGE BIOLOGY, Issue 1 2010
GALINA CHURKINA
Abstract Urban areas are home to more than half of the world's people, responsible for >70% of anthropogenic release of carbon dioxide and 76% of wood used for industrial purposes. By 2050 the proportion of the urban population is expected to increase to 70% worldwide. Despite fast rates of change and potential value for mitigation of carbon dioxide emissions, the organic carbon storage in human settlements has not been well quantified. Here, we show that human settlements can store as much carbon per unit area (23,42 kg C m,2 urban areas and 7,16 kg C m,2exurban areas) as tropical forests, which have the highest carbon density of natural ecosystems (4,25 kg C m,2). By the year 2000 carbon storage attributed to human settlements of the conterminous United States was 18 Pg of carbon or 10% of its total land carbon storage. Sixty-four percent of this carbon was attributed to soil, 20% to vegetation, 11% to landfills, and 5% to buildings. To offset rising urban emissions of carbon, regional and national governments should consider how to protect or even to increase carbon storage of human-dominated landscapes. Rigorous studies addressing carbon budgets of human settlements and vulnerability of their carbon storage are needed. [source]


The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range?

GLOBAL ECOLOGY, Issue 1 2007
Matthew C. Fitzpatrick
ABSTRACT Aim, The use of species distribution models (SDMs) to predict biological invasions is a rapidly developing area of ecology. However, most studies investigating SDMs typically ignore prediction errors and instead focus on regions where native distributions correctly predict invaded ranges. We investigated the ecological significance of prediction errors using reciprocal comparisons between the predicted invaded and native range of the red imported fire ant (Solenopsis invicta) (hereafter called the fire ant). We questioned whether fire ants occupy similar environments in their native and introduced range, how the environments that fire ants occupy in their introduced range changed through time relative to their native range, and where fire ant propagules are likely to have originated. Location, We developed models for South America and the conterminous United States (US) of America. Methods, We developed models using the Genetic Algorithm for Rule-set Prediction (GARP) and 12 environmental layers. Occurrence data from the native range in South America were used to predict the introduced range in the US and vice versa. Further, time-series data recording the invasion of fire ants in the US were used to predict the native range. Results, Native range occurrences under-predicted the invasive potential of fire ants, whereas occurrence data from the US over-predicted the southern boundary of the native range. Secondly, introduced fire ants initially established in environments similar to those in their native range, but subsequently invaded harsher environments. Time-series data suggest that fire ant propagules originated near the southern limit of their native range. Conclusions, Our findings suggest that fire ants from a peripheral native population established in an environment similar to their native environment, and then ultimately expanded into environments in which they are not found in their native range. We argue that reciprocal comparisons between predicted native and invaded ranges will facilitate a better understanding of the biogeography of invasive and native species and of the role of SDMs in predicting future distributions. [source]


Evidence for Changing Flood Risk in New England Since the Late 20th Century,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 2 2009
Mathias J. Collins
Abstract:, Long-term flow records for watersheds with minimal human influence have shown trends in recent decades toward increasing streamflow at regional and national scales, especially for low flow quantiles like the annual minimum and annual median flows. Trends for high flow quantiles are less clear, despite recent research showing increased precipitation in the conterminous United States over the last century that has been brought about primarily by an increased frequency and intensity of events in the upper 10th percentile of the daily precipitation distribution , particularly in the Northeast. This study investigates trends in 28 long-term annual flood series for New England watersheds with dominantly natural streamflow. The flood series are an average of 75 years in length and are continuous through 2006. Twenty-five series show upward trends via the nonparametric Mann-Kendall test, 40% (10) of which are statistically significant (p < 0.1). Moreover, an average standardized departures series for 23 of the study gages indicates that increasing flood magnitudes in New England occurred as a step change around 1970. The timing of this is broadly synchronous with a phase change in the low frequency variability of the North Atlantic Oscillation, a prominent upper atmospheric circulation pattern that is known to effect climate variability along the United States east coast. Identifiable hydroclimatic shifts should be considered when the affected flow records are used for flood frequency analyses. Special treatment of the flood series can improve the analyses and provide better estimates of flood magnitudes and frequencies under the prevailing hydroclimatic condition. [source]


Estimating Watershed Level Nonagricultural Pesticide Use From Golf Courses Using Geospatial Methods,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2008
Garey A. Fox
Abstract:, Limited information exists on pesticide use for nonagricultural purposes, making it difficult to estimate pesticide loadings from nonagricultural sources to surface water and to conduct environmental risk assessments. A method was developed to estimate the amount of pesticide use on recreational turf grasses, specifically golf course turf grasses, for watersheds located throughout the conterminous United States (U.S.). The approach estimates pesticide use: (1) based on the area of recreational turf grasses (used as a surrogate for turf associated with golf courses) within the watershed, which was derived from maps of land cover, and (2) from data on the location and average treatable area of golf courses. The area of golf course turf grasses determined from these two methods was used to calculate the percentage of each watershed planted in golf course turf grass (percent crop area, or PCA). Turf-grass PCAs derived from the two methods were used with recommended application rates provided on pesticide labels to estimate total pesticide use on recreational turf within 1,606 watersheds associated with surface-water sources of drinking water. These pesticide use estimates made from label rates and PCAs were compared to use estimates from industry sales data on the amount of each pesticide sold for use within the watershed. The PCAs derived from the land-cover data had an average value of 0.4% of a watershed with minimum of 0.01% and a maximum of 9.8%, whereas the PCA values that are based on the number of golf courses in a watershed had an average of 0.3% of a watershed with a minimum of <0.01% and a maximum of 14.2%. Both the land-cover method and the number of golf courses method produced similar PCA distributions, suggesting that either technique may be used to provide a PCA estimate for recreational turf. The average and maximum PCAs generally correlated to watershed size, with the highest PCAs estimated for small watersheds. Using watershed specific PCAs, combined with label rates, resulted in greater than two orders of magnitude over-estimation of the pesticide use compared to estimates from sales data. [source]


ARSENIC IN THE SHALLOW GROUND WATERS OF CONTERMINOUS UNITED STATES: ASSESSMENT, HEALTH RISKS, AND COSTS FOR MCL COMPLIANCE,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 2 2006
Navin Kumar C. Twarakavi
ABSTRACT: A methodology consisting of ordinal logistic regression (OLR) is used to predict the probability of occurrence of arsenic concentrations in different threshold limits in shallow ground waters of the conterminous United States (CONUS) subject to a set of influencing variables. The analysis considered a number of maximum contaminant level (MCL) options as threshold values to estimate the probabilities of occurrence of arsenic in ranges defined by a given MCL of 3, 5, 10, 20, and 50 ,g/l and a detection limit of 1 ,g/l. The fit between the observed and predicted probability of occurrence was around 83 percent for all MCL options. The estimated probabilities were used to estimate the median background concentration of arsenic in the CONUS. The shallow ground water of the western United States is more vulnerable than the eastern United States. Arizona, Utah, Nevada, and California in particular are hotspots for arsenic contamination. The risk assessment showed that counties in southern California, Arizona, Florida, and Washington and a few others scattered throughout the CONUS face a high risk from arsenic exposure through untreated ground water consumption. A simple cost effectiveness analysis was performed to understand the household costs for MCL compliance in using arsenic contaminated ground water. The results showed that the current MCL of 10 ,g/l is a good compromise based on existing treatment technologies. [source]