Contemporary Evolution (contemporary + evolution)

Distribution by Scientific Domains


Selected Abstracts


SYNTHESIS: Evolutionary history of Pacific salmon in dynamic environments

EVOLUTIONARY APPLICATIONS (ELECTRONIC), Issue 2 2008
Robin S. Waples
Abstract Contemporary evolution of Pacific salmon (Oncorhynchus spp.) is best viewed in the context of the evolutionary history of the species and the dynamic ecosystems they inhabit. Speciation was complete by the late Miocene, leaving c. six million years for intraspecific diversification. Following the most recent glacial maximum, large areas became available for recolonization. Current intraspecific diversity is thus the product of recent evolution overlaid onto divergent historical lineages forged during recurrent episodes of Pleistocene glaciation. In northwestern North America, dominant habitat features have been relatively stable for the past 5000 years, but salmon ecosystems remain dynamic because of disturbance regimes (volcanic eruptions, landslides, wildfires, floods, variations in marine and freshwater productivity) that occur on a variety of temporal and spatial scales. These disturbances both create selective pressures for adaptive responses by salmon and inhibit long-term divergence by periodically extirpating local populations and creating episodic dispersal events that erode emerging differences. Recent anthropogenic changes are replicated pervasively across the landscape and interrupt processes that allow natural habitat recovery. If anthropogenic changes can be shaped to produce disturbance regimes that more closely mimic (in both space and time) those under which the species evolved, Pacific salmon should be well-equipped to deal with future challenges, just as they have throughout their evolutionary history. [source]


Evolution on ecological time-scales

FUNCTIONAL ECOLOGY, Issue 3 2007
S. P. CARROLL
Summary 1Ecologically significant evolutionary change, occurring over tens of generations or fewer, is now widely documented in nature. These findings counter the long-standing assumption that ecological and evolutionary processes occur on different time-scales, and thus that the study of ecological processes can safely assume evolutionary stasis. Recognition that substantial evolution occurs on ecological time-scales dissolves this dichotomy and provides new opportunities for integrative approaches to pressing questions in many fields of biology. 2The goals of this special feature are twofold: to consider the factors that influence evolution on ecological time-scales , phenotypic plasticity, maternal effects, sexual selection, and gene flow , and to assess the consequences of such evolution , for population persistence, speciation, community dynamics, and ecosystem function. 3The role of evolution in ecological processes is expected to be largest for traits that change most quickly and for traits that most strongly influence ecological interactions. Understanding this fine-scale interplay of ecological and evolutionary factors will require a new class of eco-evolutionary dynamic modelling. 4Contemporary evolution occurs in a wide diversity of ecological contexts, but appears to be especially common in response to anthropogenic changes in selection and population structure. Evolutionary biology may thus offer substantial insight to many conservation issues arising from global change. 5Recent studies suggest that fluctuating selection and associated periods of contemporary evolution are the norm rather than exception throughout the history of life on earth. The consequences of contemporary evolution for population dynamics and ecological interactions are likely ubiquitous in time and space. [source]


Migratory costs and contemporary evolution of reproductive allocation in male chinook salmon

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2003
M. T. Kinnison
Abstract Energetically demanding migrations may impact the resources available for reproductive trait development and activity, and hence favour evolution of new investment strategies for remaining resources. We conducted a large-scale experiment to evaluate the proximate cost of migration on male reproductive investment in chinook salmon (Oncorhynchus tshawytscha) and contemporary evolution of reproductive allocation. Experimentally induced differences in migratory costs (17 km inland and 17 m elevation vs. 100 km and 430 m) influenced dorsal hump size and upper jaw length, two traits influencing male mating success that are developed during migration. Longer migration also reduced tissue energy reserves available for competition and length of breeding life. Corresponding shifts in the balance between natural and sexual selection appear to have been responsible for heritable population divergence in secondary sexual trait investment, in approximately 26 generations, following colonization of spawning sites with different migratory demands. [source]


Eco-evolutionary vs. habitat contributions to invasion in salmon: experimental evaluation in the wild

MOLECULAR ECOLOGY, Issue 1 2008
MICHAEL T. KINNISON
Abstract Although trait evolution over contemporary timescales is well documented, its influence on ecological dynamics in the wild has received much less attention particularly compared to traditional ecological and environmental factors. For example, evolution over ecologically relevant timescales is expected in populations that colonize new habitats, where it should theoretically enhance fitness, associated vital rates of survival and reproduction, and population growth potential. Nonetheless, success of exotic species is much more commonly attributed to ecological aspects of habitat quality and ,escape from enemies' in the invaded range. Here, we consider contemporary evolution of vital rates in introduced Chinook salmon (Oncorhynchus tshawytscha) that quickly colonized New Zealand and diverged over c. 26 generations. By using experimental translocations, we partitioned the roles of evolution and habitat quality in modifying geographical patterns of vital rates. Variation in habitat quality within the new range had the greatest influence on broad geographical patterns of vital rates, but locally adapted salmon still exhibited more than double the vital rate performance, and hence fitness, of nonlocal counterparts. The scope of this fitness evolution far exceeds the scale of divergence in trait values for these populations, or even the expected fitness effects of particular traits. These results suggest that contemporary evolution can be an important part of the eco-evolutionary dynamics of invasions and highlight the need for studies of the emergent fitness and ecological consequences of such evolution, rather than just changes in trait values. [source]


Possible contemporary evolution in an endangered species, the Santa Cruz Island fox

ANIMAL CONSERVATION, Issue 2 2009
H. M. Swarts
Abstract An ability to mount rapid evolutionary responses to environmental change may be necessary for species persistence in a human-dominated world. We present evidence of the possibility of such contemporary evolution in the anti-predator behaviour of the critically endangered Santa Cruz Island fox Urocyon littoralis. In 1994, golden eagles colonized Santa Cruz Island, CA and devastated the predator-naïve, endemic island fox population by 95% within 10 years. In 1992, just before the arrival of golden eagles, foxes showed substantial diurnal activity, but diurnal activity was 37.0% lower in 2003,2007, after golden eagle colonization; concurrently, overall activity declined and nocturnal activity increased. Moreover, on nearby Santa Catalina Island, where golden eagles were absent but where the fox population recently crashed due to a disease epidemic, remaining foxes were significantly more diurnally active than were those on Santa Cruz Island. The weight of evidence suggests that the change in activity pattern was a response to predation, not to low population density, and that this was probably a heritable rather than a learned behavioural trait. This behavioural change may allow for prolonged island fox persistence, but also potentially represents a loss of behavioural diversity in fox populations. [source]