Home About us Contact | |||
Contaminated Soils (contaminated + soil)
Selected AbstractsRemediation of sites contaminated by oil refinery operationsENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 1 2006S. Khaitan The oil industry contributes to contamination of groundwater and aquifers beneath refineries and oil terminals. The successful remediation of a contaminated site requires understanding both the hydrogeology and the nature and extent of contamination. The physical,chemical and biological mechanisms that govern contaminant release, transport and fate in soils, sediments, and associated fluid phases must be understood and quantified. In addition, understanding the flow and entrapment of nonaqueous phase liquids (NAPLs) including lighter-than-water nonaqueous phase liquids (LNAPLs) in contaminated aquifers is important for the effective design of the recovery and remediation schemes. Current remedial technologies and risk assessment techniques to remediate former oil refinery sites contaminated by NAPLs are described in this paper. Emphasis is given to the most promising remediation techniques such as pump-and-treat, on-site bioremediation, phytoremediation, in situ soil washing, and thermal-based technologies, such as steam-enhanced extraction. Some enhancements to pump-and-treat techniques such as solvent flushing, polymer enhanced flushing, and air stripping are also discussed. Finally, important risk-based cleanup criteria associated with contaminated soil at refineries are presented. © 2005 American Institute of Chemical Engineers Environ Prog, 2005 [source] Evaluating the contribution of soil properties to modifying lead phytoavailability and phytotoxicity,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2006Elizabeth A. Dayton Abstract Soil properties affect Pb bioavailability to human and ecological receptors and should be considered during ecological risk assessment of contaminated soil. We used path analysis (PA) to determine the relative contribution of soil properties (pH, organic C [OC], amorphous Fe and Al oxides [FEAL], and cation-exchange capacity [CEC]) in modifying Pb bioavailability. The response of biological endpoints (bioaccumulation and dry matter growth [DMG]) of lettuce (Lactuca sativa) grown on 21 Pb-spiked (2,000 mg/kg) soils were determined. Lettuce tissue Pb ranged from 3.22 to 233 mg/kg, and relative DMG ranged from 2.5 to 88.5% of their respective controls. Simple correlation showed strong relationships between CEC and OC (p < 0.01) and weaker relationships between pH and FEAL (p < 0.05) and Pb bioaccumulation. Results of PA suggest that soil pH increased the negative surface charge of organic matter and clay, thereby increasing CEC and decreasing Pb bioaccumulation. Also, the direct effect of OC on tissue Pb can be attributed to formation of surface Pb complexes by organic matter functional group ligands. Increased OC and/or CEC reduced Pb solubility and bioavailability in the 21 soils in the present study. The relative importance of soil properties likely will vary between studies employing different soils. Soil properties should be considered during the ecological risk assessment of metal in contaminated soils. Path analysis is useful for ecological studies involving soils with a wide range of physicochemical properties and can assist in site risk assessment of metals and remediation decisions on contaminated sites. [source] Earthworm toxicity during chemical oxidation of diesel-contaminated sandENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2005Kyung-Hee Shin Abstract An ecotoxicity test with Eisenia fetida was performed to monitor the removal of diesel and toxicity variation during the ozonation process. The three-dimensional (3-D) cell test was introduced for the monitoring of the ozonation process, and the removal rate based on total petroleum hydrocarbons (TPHs) mass was about 95% near the ozone inlet ports. This high removal rate might be caused by the low soil organic matter (SOM) content and low water content of sand. The use of a fiber-optic transflection dip probe (FOTDP) demonstrated that more than half of the injected ozone was consumed by reactions with diesel or natural ozone-consuming materials. The earthworm toxicity test using Eisenia fetida demonstrated that diesel concentrations in soil exceeding 10,000 mg/kg caused a dose-dependent weight loss in earthworms and increased mortality. Toxic effects were reduced greatly or eliminated after ozonation, and the degradation products of the ozonation were not toxic to the earthworms at the concentrations tested. One specific result was that the sublethal test on the earthworm might be more sensitive for the evaluation of the quality of contaminated soil, for some samples, which did not result in mortality and produced an adverse effect on weight. [source] Fate and stability of 14C-labeled 2,4,6-trinitrotoluene in contaminated soil following microbial bioremediation processesENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2004Martin Weiß Abstract Biological treatment of 2,4,6-trinitrotoluene (TNT) in soil rarely results in complete mineralization of the parent compound. More often, the largest proportion of the TNT carbon is incorporated into the soil organic matrix. Therefore, we evaluated the stability of nonextractable residues from various bioremediation processes of 14C-TNT in soils. The extractable amounts of the residual radioactivity varied between 7 and 33% and thus the nonextractable amount between 93 and 67% (3,15% in fulvic acids, 26,46% in humic acids, and 27,44% in the humin fraction). The residue-containing soils were analyzed for the release of radioactivity after treatment by physical (freeze and thaw, grinding of soil, and steam extraction), chemical (acid rain and addition of metal complexing agent), and biological methods (addition of compost, white rot fungi, radical-generating enzymes, and germination of plants). Freeze and thaw treatment and grinding of the soil did not alter the partitioning of the label significantly. Steam extraction and acid rain extraction increased the water extractability to 11 to 29% and to 51.6% in the native TNT-contaminated soil. The addition of ethylenediamine-tetraacetate (EDTA) increased the extractability from 7 to 12%. After biological treatment, only slightly increased extractability (<<10%) was observed. No increase of extractable TNT or known metabolites was observed with any of the treatments. Thus, under the treatment conditions applied in this study, the residues formed during microbial transformation of TNT may be biogenic residues with low mobilization potential and low hazardous impact. [source] Degradation and formation of polycyclic aromatic compounds during bioslurry treatment of an aged gasworks soilENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2003Staffan Lundstedt Abstract The goals of this study were to investigate the relative degradation rates of polycyclic aromatic compounds (PACs) in contaminated soil, and to assess whether persistent oxidation products are formed during their degradation. Samples were taken on five occasions during a pilot-scale bioslurry treatment of soil from a former gasworks site. More than 100 PACs were identified in the soil, including unsubstituted polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs (alkyl-PAHs), heterocyclic PACs, and oxygenated PAHs (oxy-PAHs), such as ketones, quinones, and coumarins. During the treatment, the low molecular weight PAHs and heterocyclics were degraded faster than the high molecular weight compounds. The unsubstituted PAHs also appear to have degraded more quickly than the corresponding alkyl-PAHs and nitrogen-containing heterocyclics. No new oxidation products that were not present in the untreated soil were identified after the soil treatment. However, oxy-PAHs that were present in the untreated soil were generally degraded more slowly than the parent compounds, suggesting that they were formed during the treatment or that they are more persistent. Two oxidation products, 1-acenaphthenone and 4-oxapyrene-5-one, were found at significantly higher concentrations at the end of the study. Because oxy-PAHs can be acutely toxic, mutagenic, or carcinogenic, we suggest that this group of compounds should also be monitored during the treatment of PAH-contaminated soil. [source] Effect of sorption and desorption resistance on aerobic trichloroethylene biodegradation in soilsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2002Sangjin Lee Abstract Biodegradation of trichloroethylene(TCE) by toluene-degrading bacteria was measured under aerobic conditions in aqueous and soil-slurry batch microcosms. For soil-phase experiments, a freshly contaminated soil and a soil containing only the desorption-resistant fraction of TCE were tested. In both cases, presence of soil resulted in biodegradation rates substantially lower than those determined in the absence of soil. In aqueous-phase experiments, an appreciable increase in the rate and extent of TCE biodegradation was observed in microcosms when toluene was added multiple times. The TCE degradation rates were clearly correlated with toluene dioxygenase (TOD) enzyme activity over time, thus providing an indication of the cometabolic pathway employed by the microbial population. In soil-slurry experiments containing freshly contaminated soil, a TCE degradation rate of approximately 150 ,g TCE/kg/h was observed during the first 39-h period, and then the TCE degradation rate slowed considerably to 0.59 and 0.84 ,g TCE/kg/h for microcosms receiving one and two additions of toluene, respectively. The TCE degradation rates in soil-slurry microcosms containing the desorption-resistant fraction of TCE-contaminated soil were approximately 0.27 and 0.32 ,g TCE/kg/h in microcosms receiving one and two additions of toluene, respectively. It is clear from these results that mass transfer into the aqueous phase limited bioavailability of TCE in the contaminated soil. [source] Cd, Cu, Pb, and Zn coprecipitates in Fe oxide formed at different pH: Aging effects on metal solubility and extractability by citrateENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2001Carmen Enid Martínez Abstract Coprecipitates of heavy metals with Fe oxides may form in contaminated soil, water, and sediment systems, particularly when oxidation-reduction processes are occurring. Once formed, coprecipitates with ferrihydrite could limit heavy metal mobility, solubility, toxicity, and bioavailability in geochemical systems. In this study, Cd, Cu, Pb, and Zn were coprecipitated with Fe by titration to pHs 6 and 7. Metal solubility was monitored during the coprecipitation process to pH 7 and after aging of the product. In the coprecipitate formed at pH 6, metal solubility was determined after the system reached pH 6 and at subsequent time intervals. We also reacted the coprecipitates with citrate and evaluated potential metal availability at increased aging times. The pH of coprecipitate formation had little effect on the long-term solubility of Cu and Zn, whereas soluble Cd was greater in the coprecipitate formed at pH 6. Soluble percentages of metals were low at both pH 6 and 7 for Cu and Pb but averaged 1.5 to 3% for Zn and greater than 40% for Cd. Hysteresis was observed in the coprecipitation curves for Zn and Cd, revealing reduced solubility after adsorption or coprecipitation. Lead and Cu failed to show hysteresis, with strong retention in the solid phase at pH greater than 6. The citrate-extractable fraction was greatest for Cd and Zn, less for Cu, and least for Pb. Citrate-extractable metal was higher for the coprecipitate formed at pH 7 than at pH 6, suggesting increased potential availability from coprecipitates formed at higher pH. [source] Methods for determining labile cadmium and zinc in soilEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 1 2000S. D. Young Summary Isotopically exchangeable cadmium and zinc (,E values') were measured on soils historically contaminated by sewage sludge and ones on zinc-rich mine spoil. The E -value assay involves determining the distribution of an added metal isotope, e.g. 109Cd, between the solid and solution phases of a soil suspension. The E values for both metals were found to be robust to changes in the position of the metal solid,solution equilibrium, even though the concentration of dissolved metal varied substantially with electrolyte composition and soil:solution ratio. Concentration of labile metal was also invariant over isotope equilibration times of 2,6 days. The use of a submicron filtration procedure, in addition to centrifuging at 2200 g, proved unnecessary if 0.1 m Ca electrolyte was used to suspend the soils. The proportion of ,fixed' metal, in non-labile forms, apparently increased with increasing pH, although there was considerable variation in both sets of contaminated soil. Zinc and cadmium in the sludged soils were similarly labile. Several possible methods for the measurement of chemically reactive metal were explored for comparison with E values, including single extraction with 1 m CaCl2 and a ,pool depletion' (PD) method. The latter involves comparing solid,solution metal equilibria in two electrolytes with differing degrees of (solution) complex formation, 0.1 m Ca(NO3)2 and CaCl2. Both the single extraction and the PD method gave good estimates of E value for Cd, although the single extraction was more consistent. Neither technique was a useful substitute for determining labile Zn, because of weak chloro-complexation of Zn2+. We therefore suggest that 1 m CaCl2 extraction of Cd alone be used as an alternative to E values to avoid the inconvenience of isotopic dilution procedures. [source] Monitoring Subsurface Contamination Using Tree BranchesGROUND WATER MONITORING & REMEDIATION, Issue 1 2007Gayathri Gopalakrishnan This paper proposes a method of assessing the distribution of chlorinated solvents in soil and ground water using tree branches. Sampling branches is a potentially more cost-effective and easier method than sampling tree cores, with less risk of damage to the tree. This approach was tested at Argonne National Laboratory, where phytoremediation is being used to remove tetrachloroethene (PCE), trichloroethene (TCE), and carbon tetrachloride (CCl4) from soil and ground water. The phytoremediation system consists of shallow-rooted willows planted in an area with contaminated soil and deep-rooted poplars planted in an area with clean soil and contaminated ground water. Branch samples were collected from 126 willows and 120 poplars. Contaminant concentrations from 31 soil borings and six monitoring wells were compared to those from branches of adjacent trees. Regression equations with correlation coefficients of at least 0.89 were obtained, which were found to be chemical specific. Kriged profiles of TCE concentration based on soil and willow branch data were developed and showed good agreement. Profiles based on ground water data could not be developed due to lack of sufficient monitoring wells for a meaningful statistical analysis. An analytical model was used to simulate TCE concentrations in tree branches from soil concentrations; the diffusion coefficient for TCE in the tree was used as the fitting parameter and the best-fit value was two orders of magnitude greater than literature values. This work indicates that tree branch sampling is a useful approach to assess contaminant distribution and potentially to determine where to locate monitoring wells or perform detailed soil analysis. Further research is necessary prior to using this method as a quantitative monitoring tool for soil and ground water. [source] Seedling Growth of Agronomic Crops in Crude Oil Contaminated SoilJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 4 2006I. Issoufi Abstract Phytoremediation of hydrocarbon-contaminated soil shows promise as a low-cost alternative to most remediation methods. This study evaluated seedling growth of six crop species in crude oil contaminated soils. The experiments were conducted in a greenhouse. Weathered crude oil was added to an Ipava silt loam soil at the rate of 0 (control), 10, 50 and 100 g of crude oil kg,1 of soil, which was then placed into pots. Irrigation was used to maintain soil moisture at approximately field capacity. Five seeds of Zea mays, Meticago sativa, Lolium perenne, Triticum aestivum, Glycine max or Vicia villosa were sown per pot. The experimental design was completely randomized with five replications per treatment. Germination and seedling height data were recorded on day 7, 14, 21 and 28. Plants were harvested on day 28, separated into shoots and roots and dried to measure biomass. Analysis of variance was used to determine treatment significance. Significant treatment mean values were separated using Tukey's Honestly Significant Difference Test. Based upon percent emergence and plant biomass production in contaminated soil, Z. mays and G. max seedlings show the greatest potential to enhance remediation. [source] Biodegradation of disperse textile dye Brown 3REL by newly isolated Bacillus sp.JOURNAL OF APPLIED MICROBIOLOGY, Issue 1 2008Abstract Aims:, To isolate the potential micro-organism for the degradation of textile disperse dye Brown 3 REL and to find out the reaction mechanism. Methods and Results:, 16S rDNA analysis revealed an isolate from textile effluent contaminated soil as Bacillus sp. VUS and was able to degrade (100%) dye Brown 3REL within 8 h at static anoxic condition. A significant increase in the activities of lignin peroxidase, laccase and NADH-DCIP reductase was observed up to complete decolourization of Brown 3REL. The optimum temperature required for degradation was 40°C and pH 6·5,12·0. Phyto-toxicity and chemical oxygen demand revealed nontoxic products of dye degradation. The biodegradation was monitored by UV,VIS, FTIR spectroscopy and HPLC. The final products 6,8-dichloro-quinazoline-4-ol and cyclopentanone were characterized by gas chromatography-mass spectrometry. This Bacillus sp. VUS also decolourized (80%) textile dye effluent within 12 h. Conclusions:, This study suggests that Bacillus sp. VUS could be a useful tool for textile effluent treatment. Significance and Impact of the Study:, The newly isolated Bacillus sp. VUS decolourized 16 textile dyes and textile dye effluent also. It achieved complete biodegradation of Brown 3REL. Phytotoxicity study demonstrated no toxicity of the biodegraded products for plants with respect to Triticum aestivum and Sorghum bicolor. [source] Tyrosinase and peroxidase production by Rhizopus oryzae strain ENHE obtained from pentachlorophenol-contaminated soilJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 10 2008Hugo León-Santiesteban Abstract BACKGROUND: The aim of this study was to investigate the ability of a zygomycete isolated from pentachlorophenol (PCP)-contaminated soil to produce peroxidase and phenoloxidase enzymes, and to determine the effect of tyrosine and PCP on the enzyme activities. The ability of the isolate to tolerate and remove PCP was also studied. RESULTS: A zygomycete capable of tolerating and removing PCP was isolated from contaminated soil and identified by molecular techniques as Rhizopus oryzae strain ENHE. This fungus produced extra- and intracellular tyrosinase and extracellular lignin peroxidase. Tyrosinase activity increased with 0.1 g tyrosine L,1 added to the culture medium. PCP had no effect on tyrosinase activity but increased lignin peroxidase activity. It was shown that R. oryzae ENHE grew until 100 mg PCP L,1 and removed 90% of the initial PCP concentration of 12.5 mg L,1 in 24 h and that the enzymes tyrosinase and lignin peroxidase were probably involved in the PCP removal process. CONCLUSION: The results indicate that R. oryzae ENHE has the potential to be used to produce tyrosinase and lignin peroxidase enzymes. In the few studies that report the production of peroxidase and extracellular tyrosinase by fungi, these enzymes are produced mainly by basidiomycetes. Copyright © 2008 Society of Chemical Industry [source] Bioavailable cadmium during the bioremediation of phenanthrene-contaminated soils using the diffusive gradients in thin-film techniqueLETTERS IN APPLIED MICROBIOLOGY, Issue 3 2006M.A. Amezcua-Allieri Abstract Aims:, To study the impact of fungal bioremediation of phenanthrene on trace cadmium solid-solution fluxes and solution phase concentration. Methods and Results:, The bioremediation of phenanthrene in soils was performed using the fungus Penicillium frequentans. Metal behaviour was evaluated by the techniques of diffusive gradient in thin-films (DGT) and filtration. Fluxes of cadmium (Cd) show a significant (P < 0·002) increase after the start of bioremediation, indicating that the bioremediation process itself releases significant amount of Cd into solution from the soil solid-phase. Unlike DGT devices, the solution concentration from filtration shows a clear bimodal distribution. We postulate that the initial action of the fungi is most likely to breakdown the surface of the solid phase to smaller, ,solution-phase' material (<0·45 ,m) leading to a peak in Cd concentration in solution. Conclusions:, Phenanthrene removal from soils by bioremediation ironically results in the mobilization of another toxic pollutant (Cd). Significance and Impact of the Study:, Bioremediation of organic pollutants in contaminated soil will likely lead to large increases in the mobilization of toxic metals, increasing metal bio-uptake and incorporation into the wider food chain. Bioremediation strategies need to account for this behaviour and further research is required both to understand the generality of this behaviour and the operative mechanisms. [source] Treatment technology for remediation of wood preserving sites: OverviewREMEDIATION, Issue 3 2000Edward R. Bates This is the first in a series of five articles describing the applicability, performance, and cost of technologies for the remediation of contaminated soil and water at wood preserving sites. Site-specific treatability studies conducted under the supervision of the United States Environmental Protection Agency (US EPA), National Risk Management Research Laboratory (NRMRL), from 1995 through 1997 constitute much of the basis for the evaluations presented, although data from other treatability studies, literature sources, and actual site remediations have also been included to provide a more comprehensive evaluation of remediation technologies. This article provides an overview of the wood preserving sites studied, including contaminant levels, and a summary of the performance of the technologies evaluated. The subsequent articles discuss the performance of each technology in more detail. Three articles discuss technologies for the treatment of soils, including solidification/stabilization, biological treatment, solvent extraction and soil washing. One article discusses technologies for the treatment of liquids, water and nonaqueous phase liquids (NAPLS), including biological treatment, carbon adsorption, photolytic oxidation, and hydraulic containment. The reader should be aware that other technologies including, but not limited to, incineration, thermal desorption, and base catalyzed dehalogenation, also have application for treating contaminants on wood preserving sites. They are not discussed in these five articles since the focus was to evaluate lesser known and hopefully lower cost approaches. However, the reader should include consideration of these other technologies as part of any evaluation or screening of technologies applicable to remediation of wood preserving sites. [source] Environmental factors affecting the levels of legacy pesticides in the airshed of Delaware and Chesapeake Bays, USAENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2010Anubha Goel Abstract Organochlorine insecticides and their degradation products contribute to toxicity in Chesapeake Bay, USA, sediments and affect the reproductive health of avian species in the region; however, little is known of atmospheric sources or temporal trends in concentrations of these chemicals. Weekly air (n,=,265) and daily rain samples (n,=,494) were collected over 2000 to 2003 from three locations in the Delmarva Peninsula, USA. Pesticides were consistently present in the gas phase with infrequent detection in the particle phase. Hexachlorocyclohexanes (HCHs) and cis - and trans -chlordane were detected most frequently (95,100%), and cis - and trans -nonachlor, oxychlordane, heptachlor, heptachlor epoxide, dieldrin, and 1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethenyl]benzene (4,4,-DDE) were also detected frequently. The highest mean air concentrations were for dieldrin (60,84,pg/m3), ,-HCH (37,83,pg/m3), and 4,4,-DDE (16,80,pg/m3). Multiple regression analyses of air concentrations with temperature and wind conditions using modified Clausius-Clapeyron equations explained only 30 to 60% of the variability in concentration for most chemicals. Comparison of the air concentrations and enthalpy of air,surface exchange values at the three sites indicate sources of chlordanes and ,-HCH sources are primarily from long-range transport. However, examination of chlordane isomer ratios indicates some local and regional contributions, and ,-HCH, 4,4,-DDE, dieldrin, heptachlor, heptachlor epoxide, and oxychlordane also have local or regional sources, possibly from contaminated soils. Median rain sample volumes of 1 to 3 L led to infrequent detections in rain; however, average measured concentrations were 2 to 10 times higher than in the Great Lakes. Dissipation half-lives in air were well below 10 years for all chemicals and below published values for the Great Lakes except dieldrin, which did not decline during the sample period. Environ. Toxicol. Chem. 2010;29:1893,1906. © 2010 SETAC [source] Development of a simulated earthworm gut for determining bioaccessible arsenic, copper, and zinc from soil,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2009Wai K. Ma Abstract Soil physicochemical characteristics and contamination levels alter the bioavailability of metals to terrestrialinvertebrates. Current laboratory-derived benchmark concentrations used to estimate risk do not take into account site-specific conditions, such as contaminant sequestration, and site-specific risk assessment requires a battery of time-consuming and costly toxicity tests. The development of an in vitro simulator for earthworm bioaccessibility would significantly shorten analytical time and enable site managers to focus on areas of greatest concern. The simulated earthworm gut (SEG) was developed to measure the bioaccessibility of metals in soil to earthworms by mimicking the gastrointestinal fluid composition of earthworms. Three formulations of the SEG (enzymes, microbial culture, enzymes and microbial culture) were developed and used to digest field soils from a former industrial site with varying physicochemical characteristics and contamination levels. Formulations containing enzymes released between two to 10 times more arsenic, copper, and zinc from contaminated soils compared with control and 0.01 M CaCl2 extractions. Metal concentrations in extracts from SEG formulation with microbial culture alone were not different from values for chemical extractions. The mechanism for greater bioaccessible metal concentrations from enzyme-treated soils is uncertain, but it is postulated that enzymatic digestion of soil organic matter might release sequestered metal. The relevance of these SEG results will need validation through further comparison and correlation with bioaccumulation tests, alternative chemical extraction tests, and a battery of chronic toxicity tests with invertebrates and plants. [source] Avoidance tests in site-specific risk assessment,influence of soil properties on the avoidance response of collembola and earthworms,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2008Tiago Natal-da-Luz Abstract The ability of organisms to avoid contaminated soils can act as an indicator of toxic potential in a particular soil. Based on the escape response of earthworms and Collembola, avoidance tests with these soil organisms have great potential as early screening tools in site-specific assessment. These tests are becoming more common in soil ecotoxicology, because they are ecologically relevant and have a shorter duration time compared with standardized soil toxicity tests. The avoidance response of soil invertebrates, however, can be influenced by the soil properties (e.g., organic matter content and texture) that affect behavior of the test species in the exposure matrix. Such an influence could mask a possible effect of the contaminant. Therefore, the effects of soil properties on performance of test species in the exposure media should be considered during risk assessment of contaminated soils. Avoidance tests with earthworms (Eisenia andrei) and springtails (Folsomia candida) were performed to identify the influence of both organic matter content and texture on the avoidance response of representative soil organisms. Distinct artificial soils were prepared by modifying quantities of the standard artificial soil components described by the Organization for Economic Co-operation and Development to achieve different organic matter and texture classes. Several combinations of each factor were tested. Results showed that both properties influenced the avoidance response of organisms, which avoided soils with low organic matter content and fine texture. Springtails were less sensitive to changes in these soil constituents compared with earthworms, indicating springtails can be used for site-specific assessments of contaminated soils with a wider range of respective soil properties. [source] Evaluating the contribution of soil properties to modifying lead phytoavailability and phytotoxicity,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2006Elizabeth A. Dayton Abstract Soil properties affect Pb bioavailability to human and ecological receptors and should be considered during ecological risk assessment of contaminated soil. We used path analysis (PA) to determine the relative contribution of soil properties (pH, organic C [OC], amorphous Fe and Al oxides [FEAL], and cation-exchange capacity [CEC]) in modifying Pb bioavailability. The response of biological endpoints (bioaccumulation and dry matter growth [DMG]) of lettuce (Lactuca sativa) grown on 21 Pb-spiked (2,000 mg/kg) soils were determined. Lettuce tissue Pb ranged from 3.22 to 233 mg/kg, and relative DMG ranged from 2.5 to 88.5% of their respective controls. Simple correlation showed strong relationships between CEC and OC (p < 0.01) and weaker relationships between pH and FEAL (p < 0.05) and Pb bioaccumulation. Results of PA suggest that soil pH increased the negative surface charge of organic matter and clay, thereby increasing CEC and decreasing Pb bioaccumulation. Also, the direct effect of OC on tissue Pb can be attributed to formation of surface Pb complexes by organic matter functional group ligands. Increased OC and/or CEC reduced Pb solubility and bioavailability in the 21 soils in the present study. The relative importance of soil properties likely will vary between studies employing different soils. Soil properties should be considered during the ecological risk assessment of metal in contaminated soils. Path analysis is useful for ecological studies involving soils with a wide range of physicochemical properties and can assist in site risk assessment of metals and remediation decisions on contaminated sites. [source] Phytotoxicity and phytoaccumulation of trivalent and hexavalent chromium in brake fernENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2005Yi Su Abstract A recently recognized hyperaccumulator plant, Chinese brake fern (Pteris vittata), has been found to extract very high concentration of arsenic from arsenic-contaminated soil. Chromium usually is a coexisting contaminant with arsenic in most contaminated soils. The potential application of ferns for phytoremediation of chromium(III)- and chromium(VI)-contaminated soils and their phytotoxicity to ferns has not been studied before. In this study, chromium distribution and phytotoxicity at the plant and cellular levels of brake ferns were studied using chemical analyses and scanning electron microscopy. The results show a higher phytotoxicity of Cr from Cr(VI)-contaminated soil to Chinese brake fern than from Cr(III)-contaminated soil. Phytotoxicity symptoms included significant decreases both in fresh biomass weight and relative water content (RWC), and also in leaf chlorosis during the late stage of growing. At higher concentrations (500 mg/kg Cr[VI] and 1,000 mg/kg Cr[III] addition), plants showed reduction in the number of palisade and spongy parenchyma cells in leaves. Compared with other plant species reported for phytoremediation of Cr(VI)-contaminated soil, brake fern took up and accumulated significant amounts of Cr (up to 1,145 mg/kg in shoots and 5,717 mg/kg in roots) and did not die immediately from phytotoxicity. Our study suggests that Chinese brake fern is a potential candidate for phytoremediation of Cr(VI)-contaminated soils, even though plants showed severe phytotoxic symptoms at higher soil Cr concentrations. [source] Comparing the solid phase and saline extract Microtox® assays for two polycyclic aromatic hydrocarbon-contaminated soilsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2004Carolyn M. Acheson Abstract The performance of remedial teatments is typically evaluated by measuring the concentration of specific chemicals. By adding toxicity bioassays to treatment evaluations, a fuller understanding of treatment performance is obtained. The solid phase Microtox® assay is a useful tool in characterizing the toxicity of contaminated soils and sediments. This study compares the performance of the solid phase and saline extract Microtox assays in two experiments using two soils contaminated with polycyclic aromatic hydrocarbons (PAHs). The first experiment, conducted to refine the solid phase assay procedures, evaluated sample holding times, sample replication, and reference toxicant controls. The effective concentration reducing light emission by 50% (EC50) of four samples was measured with eight replicates of each sample. Samples were stored for as long as two weeks without showing substantial changes in toxicity. For future studies, three replicates of each sample are recommended because that degree of replication yielded a statistical power of more than 95% in most samples. Phenol was a reliable reference toxicant with a mean EC50 of 21.76 and a 95% confidence interval of 15.6 to 27.9 mg/L. In a second experiment, the solid phase Microtox assay was compared to saline extract Microtox assays with mixing times ranging from 5 min to 16 h. The solid phase assay was more sensitive yielding EC50s 7 to 50 times lower than the extract EC50s. In addition, the saline extract assays displayed results that varied for mixing times of less than 2 h. Based on these two experiments, the solid phase Microtox test has proved to be a useful assay for measuring the toxicity of PAH-contaminated soils. [source] A protocol to estimate the release of anthropogenic hydrocarbons from contaminated soilsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2003Raymond C. Loehr Abstract An operational protocol, appropriate for a tier 1 or tier 2 type relative risk evaluation of a site that has polycyclic aromatic hydrocarbon (PAH) or petroleum hydrocarbon impacted soils, was developed to estimate the fraction of anthropogenic hydrophobic hydrocarbons that will be released rapidly from such soils. The development of this protocol used over 400 datasets from 40 different field samples to establish and verify the operational protocol. The datasets resulted from four-month kinetic desorption studies of these field samples. Based on the chemicals evaluated, the protocol has greatest application to two, three, and four ring-PAH and to diesel range aliphatic hydrocarbons. The protocol is a simple batch desorption analysis that uses established methods and is conducted for 7 d. The protocol results were verified with specific correlation relationships (r2 = 0.81 to 0.96) to estimate the rapidly releasing fraction (F value) that is obtained in a full, four-month chemical release evaluation. [source] Bioaugmentation of tar-contaminated soils under field conditions using Pleurotus ostreatus refuse from commercial mushroom production,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2003Helle Hestbjerg Abstract The influence of the white rot fungus Pleurotus ostreatus on the degradation of selected poly- and heterocyclic aromatic hydrocarbons (referred to as polycyclic aromatic hydrocarbons [PAHs]) in soil was investigated under field conditions representing the Northern temperate zone. Pleurotus ostreatus was added to two contaminated soils in the form of homogenized refuse from the commercial production of fungus. The soils were collected from a former shipyard (the B&W soil) and underneath a former coal tar storage at an old asphalt factory in Denmark (the Ringe soil). Treatments (control, soil mixed with autoclaved sawdust medium, and soil mixed with P. ostreatus refuse) were set up in triplicate in concrete cylinders (height, 50 cm; diameter, 60 cm). The activity of P. ostreatus was measured as laccase activity and phenanthrene (PHE)- and pyrene (PYR)-degrading bacteria were enumerated. Twenty-one different PAHs were quantified. After nine weeks the concentrations of the 3-, 4-, 5-, and 6-ring PAHs in the Ringe soil were reduced by 78, 41, and 4%, respectively. These reductions corresponded with high initial laccase activity, a decrease in pH caused by the fungus, and an increase in the number of PHE- and PYR-degrading bacteria. No significant PAH degradation was observed in the B&W soil. Reasons for the difference in performance of P. ostreatus in the two soils are discussed in terms of soil histories and bioavailability. The use of P. ostreatus refuse holds promising potential for bioremediation purposes. [source] Changes in toxicity and bioavailability of lead in contaminated soils to the earthworm Eisenia fetida (savigny 1826) after bone meal amendments to the soilENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2002Nicola A. Davies Abstract The effect of bone meal (Ca5(PO4)3OH) amendments on lead (Pb) bioavailability to Eisenia fetida (Savigny 1826) was investigated. A standard uncontaminated soil was amended with Pb(NO3)2 solution to give Pb concentrations of 7,000 ,g/g of soil. After one week, bone meal was added to one half of the soil in the ratio 1:20 bone meal:soil. Immediately after addition of the bone meal, survival times of E. fetida were 23 and 41 h in the bone meal-free and bone meal-amended soil, respectively. Twentyeight days after addition of the bone meal, survival times of Eisenia fetida were 67 h in the bone meal-free soil and more than 168 h in the bone meal-amended soil. In a second experiment, a standard Organisation for Economic Co-operation and Development reproduction toxicity test was carried out, but in addition to Pb(NO3)2 solution, bone meal was added to the soil in the ratio 1:20 bone meal:soil. The bone meal-free soil was left for five weeks before addition of E. fetida. In the bone meal-amended soil, bon emeal was added to the soil one week after addition of the Pb. The soil was left for a further four weeks before addition of Eisenia fetida. Calculated toxicities were significantly lower for the bone meal-amended soil than those calculated for the bone meal-free soil. Twenty-eight-day median lethal concentrations (LC50s; concentration that is statistically likely to kill 50% of the exposed test organism within a given time period ± 95% confidence intervals) of Pb were 4,379 ± 356 ,g/g of soil for bone meal-free soil and 5,203 ± 401 ,g/g of soil for bone meal-amended soil. Twenty-eight-day median effect concentrations (EC50s; concentration causing a reduction by 50% of a stated parameter) of Pb for weight change were 1,408 ± 198 ,g/g of soil for bone meal-free soil and 3,334 ± 731 ,g/g of soil for bone meal-amended soil and EC50s for cocoon production were 971 ± 633 ,g/g of soil for bone meal-free soil and 1,814 ± 613 ,g/g of soil for bone meal-amended soil. Significant mortalities occurred at Pb concentrations of 2,000 ,g/g of soil in the bone meal-free soil and 5,000 ,g/g of soil in the bone meal-amended soil. Earthworm Pb body load was lower in the bone meal-treated soil than in the bone meal-free soil up to a Pb concentration of 5,000 ,g/g of soil. Earthworm Pb body load was approximately 100 ,g/g of worm in surviving earthworms in both experiments when significant mortality occurred. Water and diethylenetriamine pentaacetic acid-extractable soil Pb showed good correlations with earthworm Pb body load. These extractions could be used as estimates for Pb bioavailability. [source] Absorption of copper(II) by creosote bush (Larrea tridentata): Use of atomic and x-ray absorption spectroscopyENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2001Jorge Luis Gardea-Torresdey Abstract Larrea tridentata (creosote bush), a common North American native desert shrub, exhibits the ability to take up copper(II) ions rapidly from solution. Following hydroponic studies, U.S. Environmental Protection Agency method 200.3 was used to digest the plant samples, and flame atomic absorption spectroscopy (FAAS) was used to determine the amount of copper taken up in different parts of the plant. The amount of copper(II) found within the roots, stems, and leaves was 13.8, 1.1, and 0.6 mg/g, respectively, after the creosote bush was exposed to a 63.5-ppm copper(II) solution for 48 h. When the plant was exposed to a 635-ppm copper(II) solution, the roots, stems, and leaves contained 35.0, 10.5, and 3.8 mg/g, respectively. In addition to FAAS analysis, x-ray microfluorescence (XRMF) analysis of the plant samples provided further confirmation of copper absorption by the various plant parts. X-ray absorption spectroscopy (XAS) elucidated the oxidation state of the copper absorbed by the plants. The copper(II) absorbed from solution remained as copper(II) bound to oxygen-containing ligands within the plant samples. The results of this study indicate that creosote bush may provide a useful and novel method of removing copper(II) from contaminated soils in an environmentally friendly manner. [source] Immobilization of the heavy metals Cd, Cu and Pb in an acid soil amended with gypsum- and lime-rich industrial by-productsEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 1 2004V. Illera Summary In situ stabilization of heavy metals in contaminated soils by the addition of various types of soil amendment is an attractive technique for remediation. We investigated the potential of three industrial by-products (phosphogypsum, red gypsum and dolomitic residue) for boosting the heavy metal sorption capacity of an acid soil (patents pending, Spanish applications no 200201704 and 200201375) by using sorption isotherm experiments. The three by-products were found substantially to increase the retention of lead, cadmium and copper on the solid components of the soil. The increase in lead retention of the soil horizons upon the addition of both phosphogypsum and red gypsum was dominated by the formation of anglesite minerals. The dolomitic residue increased the metal retention capacity of the soil horizons through the precipitation of laurionite-type minerals as well as cadmium and copper hydroxy-chlorides. In addition to the batch sorption study, we used scanning electron microscopy to investigate the metal sorption processes in the soil by the effect of the treatments. Lead was frequently found to be linked to the edge charges of kaolinite minerals. The three metals were found to be associated with organic matter in the Ap horizon treated with the three by-products. Finally, the three metals were found to be associated with undissolved dolomitic residue particles. [source] Soil solution concentration of Cd and Zn canbe predicted with a CaCl2 soil extractEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 1 2003F. Degryse Summary Risk assessment of heavy metals in soil requires an estimate of the concentrations in the soil solution. In spite of the numerous studies on the distribution of Cd and Zn in soil, few measurements of the distribution coefficient in situ, Kd, have been reported. We determined the Kd of soils contaminated with Cd and Zn by measuring metal concentrations in the soil and in the soil solution and attempted to predict them from other soil variables by regression. Soil pH explained most of the variation in logKd (R2 = 0.55 for Cd and 0.70 for Zn). Introducing organic carbon content or cation exchange capacity (CEC) as second explanatory variable improved the prediction (R2 = 0.67 for Cd and 0.72 for Zn), but these regression models, however, left more than a factor of 10 of uncertainty in the predicted Kd. This large degree of uncertainty may partly be due to the variable degree of metal fixation in contaminated soils. The labile metal content was measured by isotopic dilution (E value). The E value ranged from 18 to 92% of the total metal content for Cd and from 5 to 68% for Zn. The prediction of Kd improved when metals in solution were assumed to be in equilibrium with the labile metal pool instead of the total metal pool. It seems necessary therefore to discriminate between ,labile' and ,fixed' pools to predict Kd for Cd and Zn in field contaminated soils accurately. Dilute salt extracts (e.g. 0.01 m CaCl2) can mimic soil solution and are unlikely to extract metals from the fixed pool. Concentrations of Cd and Zn in the soil solution were predicted from the concentrations of Cd and Zn in a 0.01 m CaCl2 extract. These predictions were better correlated with the observations for field contaminated soils than the predictions based on the regression equations relating logKd to soil properties (pH, CEC and organic C). [source] Effect of petrochemical sludge concentrations on microbial communities during soil bioremediationFEMS MICROBIOLOGY ECOLOGY, Issue 2 2005María T. del Panno Abstract Qualitative and quantitative changes of microbial communities in soil microcosms during bioremediation were determined throughout one year. The soil was contaminated with 0%, 2.5%, 5%, 10% (wt/wt) of petrochemical sludge containing polynuclear aromatic hydrocarbons. We analyzed the hydrocarbon concentration in the microcosms, the number of cultivable bacteria using CFU and most probable number assays, the community structure using denaturing gradient gel electrophoresis, and the metabolic activity of soil using dehydrogenase activity and substrate-induced respiration assays. After one year of treatment, the chemical analysis suggested that the hydrocarbon elimination process was over. The biological analysis, however, showed that the contaminated microcosms suffered under long-term disturbance. The number of heterotrophic bacteria that increased after sludge addition (up to 108,109 cells ml,1) has not returned to the level of the control soil (2,6 × 107 cells ml,1). The community structure in the contaminated soils differed considerably from that in the control. The substrate-induced respiration of the contaminated soils was significantly lower (,10-fold) and the dehydrogenase activity was significantly higher (20,40-fold) compared to the control. Changes in the community structure of soils depended on the amount of added sludge. The species, which were predominant in the sludge community, could not be detected in the contaminated soils. [source] Desorption of zinc by extracellularly produced metabolites of Trichoderma harzianum, Trichoderma reesei and Coriolus versicolorJOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2007P. Adams Abstract Aims:, To determine the role of fungal metabolites in the desorption of metals. Methods and Results:, Desorption of Zn from charcoal by three different fungi was compared against metal desorption with reverse osmosis water, a 0·1% Tween 80 solution and a 0·1 mol l,1 CaCl2 solution. All three fungal filtrates desorbed three times more Zn than either 0·1% Tween 80 or 0·1 mol l,1 CaCl2. Metal chelator production in Trichoderma harzianum and Coriolus versicolor was constitutively expressed while chelator production in Trichoderma reesei was induced by Zn. The presence of Zn inhibited the production of metal chelators by C. versicolor. Only C. versicolor was found to produce oxalic acid (a strong metal chelator). All fungi caused a marked decrease in pH, although this was not enough to explain the increased desorption of the metals by the different fungal filtrates. Conclusions:, Metal chelation via organic acids and proteins are the main mechanisms by which the fungal filtrates increase zinc desorption. Significance and Impact of the Study:, The results of this study explain why plants inoculated with T. harzianum T22 take up more metal from soil, than noninoculated plants while metabolites produced by fungi could be used for metal leaching from contaminated soils. [source] Efficient removal of hexavalent chromium by a tolerant Streptomyces sp. affected by the toxic effect of metal exposureJOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2007D.K. Morales Abstract Aims:, To isolate and analyse chromium-resistant micro-organisms suitable for bioremediation. Methods and Results:, Strain CG252, with a minimal inhibitory concentration of 500 ,g ml,1, was isolated from contaminated soils and identified as a Streptomyces sp. by 16S rDNA sequence analysis. Assays carried out at various Cr(VI) concentrations indicated that chromium removal was more efficient at lower concentrations and that this activity resulted in accumulation of Cr(III). Atomic adsorption analysis indicated that the chromium removed was not associated with cell mass and activity assays showed that the capacity to reduce Cr(VI) was most probably due to a soluble cytosolic enzyme. Cells grown as biofilms showed enhanced removal of Cr(VI) with respect to planktonic cells, while analysis of growth and colony morphology indicated that Cr(VI) had a toxic effect on this strain. Conclusions:,Streptomyces sp. CG252 tolerated heavy metals and elevated levels of chromium, despite its negative effect on growth and development, and was efficient at removing Cr(VI) by promoting reduction to Cr(III). Significance and Impact of the Study:, Strain CG252's capacity to tolerate heavy metals and to reduce Cr(VI) to the less toxic Cr(III), especially when forming biofilms, makes it a promising candidate for detoxification of sites containing this heavy metal. [source] Immunomodulation confers herbicide resistance in plantsPLANT BIOTECHNOLOGY JOURNAL, Issue 3 2004Kurt C. Almquist Summary In order to create a novel mechanism for herbicide resistance in plants, we expressed a single-chain antibody fragment (scFv) in tobacco with specific affinity to the auxinic herbicide picloram. Transgenic tobacco plants and seedlings expressing this scFv against picloram were protected from its effect in a dose-dependent manner. This is the first successful use of an antibody to confer in vivo resistance to a low molecular weight xenobiotic (i.e. < 1000 Da). Our results suggest the possibility for a generic antibody-based approach to create crops resistant to low molecular weight xenobiotics for subsequent use in the bioremediation of contaminated soils, crop protection and as novel selectable markers. [source] |