Home About us Contact | |||
Containing Genes (containing + gene)
Selected AbstractsExpression of the gene and processed pseudogenes encoding the human and rabbit translationally controlled tumour protein (TCTP)FEBS JOURNAL, Issue 17 2000Holger Thiele In humans and rabbits, the TPT1 gene encoding the translationally controlled tumour protein TCTP generates two mRNAs (TCTP mRNA1 and TCTP mRNA2) which differ in the length of their 3, untranslated regions. The distribution of these mRNAs was investigated in 10 rabbit and 50 human tissues. They were transcribed in all tissues investigated, but differed considerably in their quantity and ratio of expression. This indicates an extensive transcriptional control and involvement of tissue-specific factors. In the rabbit genome numerous processed, intronless pseudogenes were detected. Four, corresponding to both types of mRNAs, were sequenced and analysed in detail; all displayed only few mutations and were either preserved completely in the original amino acid sequence of the intron containing gene, or contained only minor mutations in the coding region which did not interrupt the open reading frame. In the mRNA population of rabbit reticulocytes two additional TCTP RNAs of the TCTP mRNA2 type were detected, which have the characteristics of pseudogene transcripts. Pseudogene transcription was supported further by CAT reporter gene assays showing substantial promoter activity of 5,-flanking regions of two TPT1 pseudogenes. [source] QTL Analysis of Trabecular Bone in BXD F2 and RI Mice,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2006Abbey L Bower Abstract A sample of 693 mice was used to identify regions of the mouse genome associated with trabecular bone architecture as measured using ,CT. QTLs for bone in the proximal tibial metaphysis were identified on several chromosomes indicating regions containing genes that regulate properties of trabecular bone. Introduction: Age-related osteoporosis is a condition of major concern because of the morbidity and mortality associated with osteoporotic fractures in humans. Osteoporosis is characterized by reduced bone density, strength, and altered trabecular architecture, all of which are quantitative traits resulting from the actions of many genes working in concert with each other and the environment over the lifespan. ,CT gives accurate measures of trabecular bone architecture providing phenotypic data related to bone volume and trabecular morphology. The primary objective of this research was to identify chromosomal regions called quantitative trait loci (QTLs) that contain genes influencing trabecular architecture as measured by ,CT. Materials and Methods: The study used crosses between C57BL/6J (B6) and DBA/2J (D2) as progenitor strains of a second filial (F2) generation (n = 141 males and 148 females) and 23 BXD recombinant inbred (RI) strains (n , 9 of each sex per strain). The proximal tibial metaphyses of the 200-day-old mice were analyzed by ,CT to assess phenotypic traits characterizing trabecular bone, including bone volume fraction, trabecular connectivity, and quantitative measures of trabecular orientation and anisotropy. Heritabilities were calculated and QTLs were identified using composite interval mapping. Results: A number of phenotypes were found to be highly heritable. Heritability values for measured phenotypes using RI strains ranged from 0.15 for degree of anisotropy in females to 0.51 for connectivity density in females and total volume in males. Significant and confirmed QTLs, with LOD scores ,4.3 in the F2 cohort and ,1.5 in the corresponding RI cohort were found on chromosomes 1 (43 cM), 5 (44 cM), 6 (20 cM), and 8 (49 cM). Other QTLs with LOD scores ranging from 2.8 to 6.9 in the F2 analyses were found on chromosomes 1, 5, 6, 8, 9, and 12. QTLs were identified using data sets comprised of both male and female quantitative traits, suggesting similar genetic action in both sexes, whereas others seemed to be associated exclusively with one sex or the other, suggesting the possibility of sex-dependent effects. Conclusions: Identification of the genes underlying these QTLs may lead to improvements in recognizing individuals most at risk for developing osteoporosis and in the design of new therapeutic interventions. [source] Genome-wide linkage of obstructive sleep apnoea and high-density lipoprotein cholesterol in a Filipino family: bivariate linkage analysis of obstructive sleep apnoeaJOURNAL OF SLEEP RESEARCH, Issue 2 2010BRONWYN L. RELF Summary Increasing evidence supports an association between obstructive sleep apnoea (OSA) and metabolic syndrome (MeS) in both children and adults, suggesting a genetic component. However, the genetic relationship between the diseases remains unclear. We performed a bivariate linkage scan on a single Filipino family with a high prevalence of OSA and MeS to explore the genetic pathways underlying these diseases. A large rural family (n = 50, 50% adults) underwent a 10-cM genome-wide scan. Fasting blood was used to measure insulin, triglycerides, total cholesterol and high density lipoprotein (HDL) cholesterol. Attended overnight polysomnography was used to quantify the respiratory disturbance index (RDI), a measure of sleep apnoea. Body mass index z -scores and insulin resistance scores were calculated. Bivariate multipoint linkage analyses were performed on RDI and MeS components. OSA prevalence was 46% (n = 23; nine adults, 14 children) in our participants. MeS phenotype was present in 40% of adults (n = 10) and 48% of children (n = 12). Linkage peaks with a logarithm of odds (LOD) score >3 were demonstrated on chromosome 19q13.4 (LOD = 3.04) for the trait pair RDI and HDL cholesterol. Candidate genes identified in this region include the killer cell immunoglobulin-like receptor genes. These genes are associated with modulating inflammatory responses in reaction to cellular stress and initiation of atherosclerotic plaque formation. We have identified a novel locus for genetic links between RDI and lipid factors associated with MeS in a chromosomal region containing genes associated with inflammatory responses. [source] Epistatic Interactions between Genomic Regions Containing the COL1A1 Gene and Genes Regulating Osteoclast Differentiation may Influence Femoral Neck Bone Mineral DensityANNALS OF HUMAN GENETICS, Issue 2 2007Tie-Lin Yang Summary Bone mineral density (BMD) is a primary risk indicator of osteoporotic fractures, which are largely determined by the actions of multiple genes. Genetic linkage studies have seldom explored epistatic interaction of genes for BMD. To evaluate potential genetic interactions for BMD at the femoral neck (FN) we conducted a variance component linkage analysis, to test epistatic effects between the genomic region containing the COL1A1 (collagen type I alpha 1) gene and the genomic regions containing genes regulating osteoclast differentiation (e.g. TNFRSF11A encoding RANK (receptor for activation of nuclear factor kappa B), TNFSF11 encoding RANKL (RANK ligand), IL1A (interleukin-1 alpha), IL6 (interleukin-6), etc) in 3998 Caucasian subjects from 434 pedigrees. We detected significant epistatic interactions between the regions containing COL1A1 with IL6 (p = 0.004) and TNFRSF1B encoding TNFR2 (tumor necrosis factor receptor 2) (p = 0.003), respectively. In summary, we identified the epistatic effects on BMD between regions containing several prominent candidate genes. Our results suggested that the IL6 and TNFRSF1B genes may regulate FN BMD variation through interactions with the COL1A1 gene, which should be substantiated by other, or population-based, association studies. [source] |