Contact Printing (contact + printing)

Distribution by Scientific Domains


Selected Abstracts


Preparation of Metallic Films on Elastomeric Stamps and Their Application for Contact Processing and Contact Printing,

ADVANCED FUNCTIONAL MATERIALS, Issue 2 2003
H. Schmid
Abstract The formation of permanent or reversible metallic patterns on a substrate has applications in microfabrication and analytical techniques. Here, we investigate how to metallize an elastomeric stamp, either for processing of a substrate mediated by the proximity between the metal on the stamp and an active layer on the substrate, or for contact printing of the metal from a stamp to a substrate. The stamps were made from poly(dimethylsiloxane) (PDMS) and were modified before metallizing them with Au by adding to or removing from their bulk mobile silicone residues, by oxidizing their surface with an O2 -plasma, by surface-fluorination via silanization, or by priming them with a Ti layer. The interplay between the adhesion of the different layers defines two categories of application: contact processing and contact printing. Contact processing corresponds to keeping the metal on the stamp after contacting a substrate; it is reversible and nondestructive, and useful to define transient electrical contacts or quench fluorescence on a surface, for example. Contact printing occurs when the metal on the stamp adheres to the printed surface. Contact printing can transfer a metal, layers of metals, or an oxide onto a substrate with submicrometer lateral resolution. The transfer can be total or localized to the regions of contact, depending on the morphology of the metal on the stamp and/or the surface chemistry of the substrate. [source]


High-Resolution Contact Printing with Chemically Patterned Flat Stamps Fabricated by Nanoimprint Lithography

ADVANCED MATERIALS, Issue 27 2009
Xuexin Duan
Chemically patterned flat stamps provide an effective solution to avoid mechanical stamp-stability problems currently encountered in microcontact printing. A new method is developed to fabricate chemical patterns on a flat PDMS stamp using nanoimprint lithography. Sub-100,nm gold patterns are successfully replicated by these chemically patterned flat PDMS stamps. [source]


Preparation of Metallic Films on Elastomeric Stamps and Their Application for Contact Processing and Contact Printing,

ADVANCED FUNCTIONAL MATERIALS, Issue 2 2003
H. Schmid
Abstract The formation of permanent or reversible metallic patterns on a substrate has applications in microfabrication and analytical techniques. Here, we investigate how to metallize an elastomeric stamp, either for processing of a substrate mediated by the proximity between the metal on the stamp and an active layer on the substrate, or for contact printing of the metal from a stamp to a substrate. The stamps were made from poly(dimethylsiloxane) (PDMS) and were modified before metallizing them with Au by adding to or removing from their bulk mobile silicone residues, by oxidizing their surface with an O2 -plasma, by surface-fluorination via silanization, or by priming them with a Ti layer. The interplay between the adhesion of the different layers defines two categories of application: contact processing and contact printing. Contact processing corresponds to keeping the metal on the stamp after contacting a substrate; it is reversible and nondestructive, and useful to define transient electrical contacts or quench fluorescence on a surface, for example. Contact printing occurs when the metal on the stamp adheres to the printed surface. Contact printing can transfer a metal, layers of metals, or an oxide onto a substrate with submicrometer lateral resolution. The transfer can be total or localized to the regions of contact, depending on the morphology of the metal on the stamp and/or the surface chemistry of the substrate. [source]


Polymer Field-Effect Transistors Fabricated by the Sequential Gravure Printing of Polythiophene, Two Insulator Layers, and a Metal Ink Gate

ADVANCED FUNCTIONAL MATERIALS, Issue 2 2010
Monika M. Voigt
Abstract The mass production technique of gravure contact printing is used to fabricate state-of-the art polymer field-effect transistors (FETs). Using plastic substrates with prepatterned indium tin oxide source and drain contacts as required for display applications, four different layers are sequentially gravure-printed: the semiconductor poly(3-hexylthiophene-2,5-diyl) (P3HT), two insulator layers, and an Ag gate. A crosslinkable insulator and an Ag ink are developed which are both printable and highly robust. Printing in ambient and using this bottom-contact/top-gate geometry, an on/off ratio of >104 and a mobility of 0.04,cm2 V,1 s,1 are achieved. This rivals the best top-gate polymer FETs fabricated with these materials. Printing using low concentration, low viscosity ink formulations, and different P3HT molecular weights is demonstrated. The printing speed of 40,m min,1 on a flexible polymer substrate demonstrates that very high-volume, reel-to-reel production of organic electronic devices is possible. [source]


Contact-Printed Microelectromechanical Systems

ADVANCED MATERIALS, Issue 16 2010
Corinne E. Packard
A process for rapid fabrication of metallic MEMS (microelectromechanical systems) without lithographic processing is presented. Using dimensionally scalable contact printing, 3D electromechanical structures (see figure) are fabricated and functionally tested. Flexible, paper-thin device arrays produced by this method may enable such applications as pressure sensing skins for people and vehicles, phased array detectors for acoustic imaging, and novel adaptive-texture display applications. [source]


Toward the Development of Printable Nanowire Electronics and Sensors

ADVANCED MATERIALS, Issue 37 2009
Zhiyong Fan
Abstract In recent years, there has been tremendous progress in the research and development of printable electronics on mechanically flexible substrates based on inorganic active components, which provide high performances and stable device operations at low cost. In this regard, various approaches have been developed for the direct transfer or printing of micro- and nanoscale, inorganic semiconductors on substrates. In this review article, we focus on the recent advancements in the large-scale integration of single crystalline, inorganic-nanowire (NW) arrays for electronic and sensor applications, specifically involving the contact printing of NWs at defined locations. We discuss the advantages, limitations, and the state-of-the-art of this technology, and present an integration platform for future printable, heterogeneous-sensor circuitry based on NW parallel arrays. [source]