Home About us Contact | |||
Conservation Units (conservation + unit)
Selected AbstractsA survey of sesamin and composition of tocopherol variability from seeds of eleven diverse sesame (Sesamum indicum L.) genotypes using HPLC-PAD-ECDPHYTOCHEMICAL ANALYSIS, Issue 4 2008Kelly S. Williamson Abstract The objective of this study was to determine the composition and content of sesamin and desmethyl tocopherols such as , -tocopherol (,T), , -tocopherol (,T) and , -tocopherol (,T) in seeds of sesame (Sesamum indicum L.) for 11 genotypes conserved in the United States Department of Agriculture (USDA), Agricultural Research Service (ARS) and Plant Genetic Resources Conservation Unit (PGRCU) in Griffin, Georgia, USA. Seed accessions studied were collections from eight countries worldwide, including one landrace from Thailand and two cultivars from Texas, USA. Novel methodologies and analytical techniques described herein consisted of reverse-phase high-performance liquid chromatography (HPLC) connected in series with two detection systems specific for each analyte class. Photodiode array detection was employed for sesamin analysis and electrochemical array detection was used in the determination of tocopherols. A preliminary study was conducted to assess sesamin levels in 2003 and tocopherol levels in 2004 from sesame seed samples conserved at the USDA, ARS and PGRCU. In 2005, sesame seed samples were grown, harvested and evaluated for sesamin as well as tocopherol levels. The overall results (n = 3) showed that sesamin, ,T, ,T and ,T levels were 0.67,6.35 mg/g, 0.034,0.175 µg/g, 0.44,3.05 µg/g and 56.9,99.3 µg/g respectively, indicating that the sesame seed accessions contained higher levels of sesamin and ,T compared with ,T and ,T. Statistical analysis was conducted and significant differences were observed among the 11 different sesame genotypes. This suggests that genetic, environmental and geographical factors influence sesamin and desmethyl tocopherol content. Copyright © 2007 John Wiley & Sons, Ltd. [source] Climatic adaptation in an isolated and genetically impoverished amphibian populationECOGRAPHY, Issue 4 2010Germán Orizaola The capacity of populations to respond adaptively to environmental change is essential for their persistence. Isolated populations often harbour reduced genetic variation, which is predicted to decrease adaptive potential, and can be detrimental under the current scenarios of global change. In this study, we examined climatic adaptation in larval life history traits in the pool frog Rana lessonae along a latitudinal gradient across the northern distribution area of the species, paying special attention to the isolated and genetically impoverished fringe populations in central Sweden. Larvae from eight populations within three geographic areas (Poland, Latvia and Sweden) were reared under three temperatures (19, 22 and 26°C) in a common garden laboratory experiment. We found clear evidence for latitudinal adaptation in R. lessonae populations, larvae from higher latitudes growing and developing faster than low-latitude ones. Larvae from the Swedish populations were able to compensate for the effects of cooler temperatures and a shorter growth season with genetically higher growth and development rates (i.e. countergradient variation) in the two higher temperature treatments, but there was no difference among the populations at the lowest temperature treatment, which is likely to be close to the temperature limiting growth in R. lessonae. Our results demonstrate that isolated and genetically impoverished populations can be locally adapted, and identify the Swedish fringe populations as a significant conservation unit adapted to the northern environmental conditions. [source] Linked vs. unlinked markers: multilocus microsatellite haplotype-sharing as a tool to estimate gene flow and introgressionMOLECULAR ECOLOGY, Issue 2 2007WIM J. M. KOOPMAN Abstract We have explored the use of multilocus microsatellite haplotypes to study introgression from cultivated (Malus domestica) into wild apple (Malus sylvestris), and to study gene flow among remnant populations of M. sylvestris. A haplotype consisted of alleles at microsatellite loci along one chromosome. As destruction of haplotypes through recombination occurs much faster than loss of alleles due to genetic drift, the lifespan of a multilocus haplotype is much shorter than that of the underlying alleles. When different populations share the same haplotype, this may indicate recent gene flow between populations. Similarly, haplotypes shared between two species would be a strong signal for introgression. As the expected lifespan of a haplotype depends on the strength of the linkage, the length [in centiMorgans (cM)] of the haplotype shared contains information on the number of generations passed. This application of shared haplotypes is distinct from using haplotype-sharing to detect association between markers and a certain trait. We inferred haplotypes for four to eight microsatellite loci on Linkage Group 10 of apple from genotype data using the program phase, and then identified those haplotypes shared between populations and species. Compared with a Bayesian analysis of unlinked microsatellite loci using the program structure, haplotype-sharing detected a partially different set of putative hybrids. Cultivated haplotypes present in M. sylvestris were short (< 1.5 cM), indicating that introgression had taken place many generations ago, except for two Belgian plants that contained a haplotype of 47.1 cM, indicating recent introgression. In the estimation of gene flow, FST based on unlinked loci indicated small (0.032,0.058) but statistically significant differentiation between some populations only. However, various M. sylvestris haplotypes were shared in nearly all pairwise comparisons of populations, and their length indicated recent gene flow. Hence, all Dutch populations should be considered as one conservation unit. The added value of using sharing of multilocus microsatellite haplotypes as a source of population genetic information is discussed. [source] The Walia ibex is a valuable and distinct conservation unitANIMAL CONSERVATION, Issue 2 2009M. Festa-Bianchet No abstract is available for this article. [source] Population genetics of Galápagos land iguana (genus Conolophus) remnant populationsMOLECULAR ECOLOGY, Issue 23 2008ATHANASIA C. TZIKA Abstract The Galápagos land iguanas (genus Conolophus) have faced significant anthropogenic disturbances since the 17th century, leading to severe reduction of some populations and the extinction of others. Conservation activities, including the repatriation of captive-bred animals to depleted areas, have been ongoing since the late 1970s, but genetic information has not been extensively incorporated. Here we use nine species-specific microsatellite loci of 703 land iguanas from the six islands where the species occur today to characterize the genetic diversity within, and the levels of genetic differentiation among, current populations as well as test previous hypotheses about accidental translocations associated with early conservation efforts. Our analyses indicate that (i) five populations of iguanas represent distinct conservation units (one of them being the recently discovered rosada form) and could warrant species status, (ii) some individuals from North Seymour previously assumed to be from the natural Baltra population appear related to both Isabela and Santa Cruz populations, and (iii) the five different management units exhibit considerably different levels of intrapopulation genetic diversity, with the Plaza Sur and Santa Fe populations particularly low. Although the initial captive breeding programmes, coupled with intensive efforts to eradicate introduced species, saved several land iguana populations from extinction, our molecular results provide objective data for improving continuing in situ species survival plans and population management for this spectacular and emblematic reptile. [source] Adaptive evolutionary conservation: towards a unified concept for defining conservation unitsMOLECULAR ECOLOGY, Issue 12 2001Dylan J. Fraser Abstract Recent years have seen a debate over various methods that could objectively prioritize conservation value below the species level. Most prominent among these has been the evolutionarily significant unit (ESU). We reviewed ESU concepts with the aim of proposing a more unified concept that would reconcile opposing views. Like species concepts, conflicting ESU concepts are all essentially aiming to define the same thing: segments of species whose divergence can be measured or evaluated by putting differential emphasis on the role of evolutionary forces at varied temporal scales. Thus, differences between ESU concepts lie more in the criteria used to define the ESUs themselves rather than in their fundamental essence. We provide a context-based framework for delineating ESUs which circumvents much of this situation. Rather than embroil in a befuddled debate over an optimal criterion, the key to a solution is accepting that differing criteria will work more dynamically than others and can be used alone or in combination depending on the situation. These assertions constitute the impetus behind adaptive evolutionary conservation. [source] Effects of different secondary vegetation types on bat community composition in Central Amazonia, BrazilANIMAL CONSERVATION, Issue 2 2010P. E. D. Bobrowiec Abstract The process of secondary succession on degraded lands in the Amazon depends on their land-use histories. In this scenario, little is known about how animal communities respond to different types of secondary vegetation in the region. We examined the effects of abandoned cattle pasture, Vismia - and Cecropia -dominated regrowth on the abundance of bat species and community composition in the Central Amazon, Brazil, based on 11 netting sites and on landscape characteristics. We captured 1444 bats, representing 26 species and two families (Phyllostomidae and Mormoopidae). Among the six most-captured Phyllostomidae bats, Sturnira lilium and Sturnira tildae had significantly higher capture rates in abandoned pasture, while Rhinophylla pumilio predominated in both Vismia - and Cecropia -dominated regrowth. An hybrid multidimensional scaling ordination revealed significant differences in the bat community among the three types of secondary vegetation. Phyllostominae bats were more common and richer in the less-disturbed areas of Cecropia -dominated regrowth, while Stenodermatinae species were more captured in abandoned pastures. Our results suggest that the type of secondary vegetation, together with its land-use history, affects bat community composition in the Central Amazon. The Phyllostominae subfamily (gleaning animalivores) was habitat selective and disappeared from areas experiencing constant disturbances. On the other hand, Stenodermatinae frugivorous bats often used and foraged in altered areas. We suggest that secondary vegetations in more-advanced successional stages can be used to augment the total area protected by forest conservation units. [source] Frontiers in identifying conservation units: from neutral markers to adaptive genetic variationANIMAL CONSERVATION, Issue 2 2009B. Gebremedhin No abstract is available for this article. [source] |