Conservation Biogeography (conservation + biogeography)

Distribution by Scientific Domains


Selected Abstracts


Conservation Biogeography: assessment and prospect

DIVERSITY AND DISTRIBUTIONS, Issue 1 2005
Robert J. Whittaker
ABSTRACT There is general agreement among scientists that biodiversity is under assault on a global basis and that species are being lost at a greatly enhanced rate. This article examines the role played by biogeographical science in the emergence of conservation guidance and makes the case for the recognition of Conservation Biogeography as a key subfield of conservation biology delimited as: the application of biogeographical principles, theories, and analyses, being those concerned with the distributional dynamics of taxa individually and collectively, to problems concerning the conservation of biodiversity. Conservation biogeography thus encompasses both a substantial body of theory and analysis, and some of the most prominent planning frameworks used in conservation. Considerable advances in conservation guidelines have been made over the last few decades by applying biogeographical methods and principles. Herein we provide a critical review focussed on the sensitivity to assumptions inherent in the applications we examine. In particular, we focus on four inter-related factors: (i) scale dependency (both spatial and temporal); (ii) inadequacies in taxonomic and distributional data (the so-called Linnean and Wallacean shortfalls); (iii) effects of model structure and parameterisation; and (iv) inadequacies of theory. These generic problems are illustrated by reference to studies ranging from the application of historical biogeography, through island biogeography, and complementarity analyses to bioclimatic envelope modelling. There is a great deal of uncertainty inherent in predictive analyses in conservation biogeography and this area in particular presents considerable challenges. Protected area planning frameworks and their resulting map outputs are amongst the most powerful and influential applications within conservation biogeography, and at the global scale are characterised by the production, by a small number of prominent NGOs, of bespoke schemes, which serve both to mobilise funds and channel efforts in a highly targeted fashion. We provide a simple typology of protected area planning frameworks, with particular reference to the global scale, and provide a brief critique of some of their strengths and weaknesses. Finally, we discuss the importance, especially at regional scales, of developing more responsive analyses and models that integrate pattern (the compositionalist approach) and processes (the functionalist approach) such as range collapse and climate change, again noting the sensitivity of outcomes to starting assumptions. We make the case for the greater engagement of the biogeographical community in a programme of evaluation and refinement of all such schemes to test their robustness and their sensitivity to alternative conservation priorities and goals. [source]


Conservation biogeography , foundations, concepts and challenges

DIVERSITY AND DISTRIBUTIONS, Issue 3 2010
David M. Richardson
Abstract Conservation biogeography involves the application of biogeographical principles, theories, and analyses to problems regarding biodiversity conservation. The field was formally defined in 2005, and considerable research has been conducted in the ensuing 5 years. This editorial sets the context for 16 contributions in a special issue of Diversity and Distributions on developments and challenges in conservation biogeography. Papers are grouped into the following main themes: species distribution modelling; data requirements; approaches for assigning conservation priorities; approaches for integrating information from numerous disparate sources; special challenges involving invasive species; and the crucial issue of determining how elements of biodiversity are likely to respond to rapid climate change. One paper provides a synthesis of requirements for a robust conservation biogeography for freshwater ecosystems. Conservation biogeography is well poised to make a significant contribution to the process of providing policy makers with objectively formulated scenarios and options for the effective management of biodiversity. The editorial, and the papers in the special issue, deliberate on many of the exciting developments in play in the field, and the many complex challenges that lie ahead. [source]


Conservation Biogeography: assessment and prospect

DIVERSITY AND DISTRIBUTIONS, Issue 1 2005
Robert J. Whittaker
ABSTRACT There is general agreement among scientists that biodiversity is under assault on a global basis and that species are being lost at a greatly enhanced rate. This article examines the role played by biogeographical science in the emergence of conservation guidance and makes the case for the recognition of Conservation Biogeography as a key subfield of conservation biology delimited as: the application of biogeographical principles, theories, and analyses, being those concerned with the distributional dynamics of taxa individually and collectively, to problems concerning the conservation of biodiversity. Conservation biogeography thus encompasses both a substantial body of theory and analysis, and some of the most prominent planning frameworks used in conservation. Considerable advances in conservation guidelines have been made over the last few decades by applying biogeographical methods and principles. Herein we provide a critical review focussed on the sensitivity to assumptions inherent in the applications we examine. In particular, we focus on four inter-related factors: (i) scale dependency (both spatial and temporal); (ii) inadequacies in taxonomic and distributional data (the so-called Linnean and Wallacean shortfalls); (iii) effects of model structure and parameterisation; and (iv) inadequacies of theory. These generic problems are illustrated by reference to studies ranging from the application of historical biogeography, through island biogeography, and complementarity analyses to bioclimatic envelope modelling. There is a great deal of uncertainty inherent in predictive analyses in conservation biogeography and this area in particular presents considerable challenges. Protected area planning frameworks and their resulting map outputs are amongst the most powerful and influential applications within conservation biogeography, and at the global scale are characterised by the production, by a small number of prominent NGOs, of bespoke schemes, which serve both to mobilise funds and channel efforts in a highly targeted fashion. We provide a simple typology of protected area planning frameworks, with particular reference to the global scale, and provide a brief critique of some of their strengths and weaknesses. Finally, we discuss the importance, especially at regional scales, of developing more responsive analyses and models that integrate pattern (the compositionalist approach) and processes (the functionalist approach) such as range collapse and climate change, again noting the sensitivity of outcomes to starting assumptions. We make the case for the greater engagement of the biogeographical community in a programme of evaluation and refinement of all such schemes to test their robustness and their sensitivity to alternative conservation priorities and goals. [source]


Conservation biogeography , foundations, concepts and challenges

DIVERSITY AND DISTRIBUTIONS, Issue 3 2010
David M. Richardson
Abstract Conservation biogeography involves the application of biogeographical principles, theories, and analyses to problems regarding biodiversity conservation. The field was formally defined in 2005, and considerable research has been conducted in the ensuing 5 years. This editorial sets the context for 16 contributions in a special issue of Diversity and Distributions on developments and challenges in conservation biogeography. Papers are grouped into the following main themes: species distribution modelling; data requirements; approaches for assigning conservation priorities; approaches for integrating information from numerous disparate sources; special challenges involving invasive species; and the crucial issue of determining how elements of biodiversity are likely to respond to rapid climate change. One paper provides a synthesis of requirements for a robust conservation biogeography for freshwater ecosystems. Conservation biogeography is well poised to make a significant contribution to the process of providing policy makers with objectively formulated scenarios and options for the effective management of biodiversity. The editorial, and the papers in the special issue, deliberate on many of the exciting developments in play in the field, and the many complex challenges that lie ahead. [source]


The geography of climate change: implications for conservation biogeography

DIVERSITY AND DISTRIBUTIONS, Issue 3 2010
D. D. Ackerly
Abstract Aim, Climate change poses significant threats to biodiversity, including impacts on species distributions, abundance and ecological interactions. At a landscape scale, these impacts, and biotic responses such as adaptation and migration, will be mediated by spatial heterogeneity in climate and climate change. We examine several aspects of the geography of climate change and their significance for biodiversity conservation. Location, California and Nevada, USA. Methods, Using current climate surfaces (PRISM) and two scenarios of future climate (A1b, 2070,2099, warmer-drier and warmer-wetter), we mapped disappearing, declining, expanding and novel climates, and the velocity and direction of climate change in California and Nevada. We also examined fine-scale spatial heterogeneity in protected areas of the San Francisco Bay Area in relation to reserve size, topographic complexity and distance from the ocean. Results, Under the two climate change scenarios, current climates across most of California and Nevada will shrink greatly in extent, and the climates of the highest peaks will disappear from this region. Expanding and novel climates are projected for the Central Valley. Current temperature isoclines are projected to move up to 4.9 km year,1 in flatter regions, but substantially slower in mountainous areas because of steep local topoclimate gradients. In the San Francisco Bay Area, climate diversity within currently protected areas increases with reserve size and proximity to the ocean (the latter because of strong coastal climate gradients). However, by 2100 of almost 500 protected areas (>100 ha), only eight of the largest are projected to experience temperatures within their currently observed range. Topoclimate variability will further increase the range of conditions experienced and needs to be incorporated in future analyses. Main Conclusions, Spatial heterogeneity in climate, from mesoclimate to topoclimate scales, represents an important spatial buffer in response to climate change, and merits increased attention in conservation planning. [source]


Spatial congruence between ecotones and range-restricted species: implications for conservation biogeography at the sub-continental scale

DIVERSITY AND DISTRIBUTIONS, Issue 3 2009
Berndt J. Van Rensburg
ABSTRACT Aim, To examine whether at a sub-continental scale range-limited species tend to occur close to areas of transition between vegetation boundaries more often than expected by chance. Location, South Africa and Lesotho. Methods, We examined the relationship between the distance of a grid square to ecological transition areas between vegetation types and both avian and frog range-limited species richness in the quadrat. We used quadrats at a spatial resolution of quarter degree (15, × 15,, 676 km2). Spatial congruence between areas representing range-restricted species and those representing ecological transition zones was assessed using a random draw technique. Results, Species richness and range size rarity are generally negatively correlated with distance to transition areas between vegetation communities when analysed for the whole region for both groups. Although this relationship becomes weaker after controlling for environmental energy and topographical heterogeneity, the explanatory power of distance to transition areas remains significant, and compared to the different biomes examined, accounts for most of the variation in bird richness (20%), frog richness (18%), range-restricted bird species (17%) and range-restricted frog species (16%) in the savanna biome. The random draw technique indicated that areas representing range-restricted species were situated significantly closer in space to those areas representing transition areas between vegetation communities than expected by chance. Main conclusions, We find that at the sub-continental scale, when examined for South Africa, areas of transition between vegetation communities hold concentrations of range-limited species in both birds and frogs. We find that South African endemic/range-limited birds and frogs are located closer to ecological transition zones than endemics and non-endemics combined. This has important implications for ongoing conservation planning in a biogeographical context. [source]


Conservation Biogeography: assessment and prospect

DIVERSITY AND DISTRIBUTIONS, Issue 1 2005
Robert J. Whittaker
ABSTRACT There is general agreement among scientists that biodiversity is under assault on a global basis and that species are being lost at a greatly enhanced rate. This article examines the role played by biogeographical science in the emergence of conservation guidance and makes the case for the recognition of Conservation Biogeography as a key subfield of conservation biology delimited as: the application of biogeographical principles, theories, and analyses, being those concerned with the distributional dynamics of taxa individually and collectively, to problems concerning the conservation of biodiversity. Conservation biogeography thus encompasses both a substantial body of theory and analysis, and some of the most prominent planning frameworks used in conservation. Considerable advances in conservation guidelines have been made over the last few decades by applying biogeographical methods and principles. Herein we provide a critical review focussed on the sensitivity to assumptions inherent in the applications we examine. In particular, we focus on four inter-related factors: (i) scale dependency (both spatial and temporal); (ii) inadequacies in taxonomic and distributional data (the so-called Linnean and Wallacean shortfalls); (iii) effects of model structure and parameterisation; and (iv) inadequacies of theory. These generic problems are illustrated by reference to studies ranging from the application of historical biogeography, through island biogeography, and complementarity analyses to bioclimatic envelope modelling. There is a great deal of uncertainty inherent in predictive analyses in conservation biogeography and this area in particular presents considerable challenges. Protected area planning frameworks and their resulting map outputs are amongst the most powerful and influential applications within conservation biogeography, and at the global scale are characterised by the production, by a small number of prominent NGOs, of bespoke schemes, which serve both to mobilise funds and channel efforts in a highly targeted fashion. We provide a simple typology of protected area planning frameworks, with particular reference to the global scale, and provide a brief critique of some of their strengths and weaknesses. Finally, we discuss the importance, especially at regional scales, of developing more responsive analyses and models that integrate pattern (the compositionalist approach) and processes (the functionalist approach) such as range collapse and climate change, again noting the sensitivity of outcomes to starting assumptions. We make the case for the greater engagement of the biogeographical community in a programme of evaluation and refinement of all such schemes to test their robustness and their sensitivity to alternative conservation priorities and goals. [source]


Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography

INSECT CONSERVATION AND DIVERSITY, Issue 3 2010
JOSE ALEXANDRE FELIZOLA DINIZ-FILHO
Abstract., 1. Despite the abundance, richness and ecological importance of insects, distribution patterns remain unknown for most groups, and this creates serious difficulties for the evaluation of macroecological patterns and the underlying drivers. Although the problem is real, we provide an optimistic perspective on insect macroecology and conservation biogeography. 2. Although data for macroecological analysis of insects are not as complete as for many other organisms (e.g., mammals and birds), at least for some insect groups they are equivalent to what existed 10 or 20 years ago for the charismatic megafauna, so initiatives to compile data for broad-scale analyses are feasible. 3. The primary constraint for studies in insect macroecology and conservation biogeography is not (only) poor data; part of the problem arises from a lack of knowledge on how macroecological patterns and processes can be analysed and interpreted. 4. Finally, we present an overview of recent papers using insects as model organisms in macroecology, including richness and diversity gradients, ecogeographical rules, inter-specific relationships, conservation planning and modelling species distributions. Although our list is not exhaustive, it may be useful as guidelines for future research and encourage ICD readers to develop analyses for other insect groups. [source]


Climate-based models of spatial patterns of species richness in Egypt's butterfly and mammal fauna

JOURNAL OF BIOGEOGRAPHY, Issue 11 2009
Tim Newbold
Abstract Aim, Identifying areas of high species richness is an important goal of conservation biogeography. In this study we compared alternative methods for generating climate-based estimates of spatial patterns of butterfly and mammal species richness. Location, Egypt. Methods, Data on the occurrence of butterflies and mammals in Egypt were taken from an electronic database compiled from museum records and the literature. Using Maxent, species distribution models were built with these data and with variables describing climate and habitat. Species richness predictions were made by summing distribution models for individual species and by modelling observed species richness directly using the same environmental variables. Results, Estimates of species richness from both methods correlated positively with each other and with observed species richness. Protected areas had higher species richness (both predicted and actual) than unprotected areas. Main conclusions, Our results suggest that climate-based models of species richness could provide a rapid method for selecting potential areas for protection and thus have important implications for biodiversity conservation. [source]


Biotic homogenization: a new research agenda for conservation biogeography

JOURNAL OF BIOGEOGRAPHY, Issue 12 2006
Julian D. Olden
Abstract Aim, Biotic homogenization describes the process by which species invasions and extinctions increase the genetic, taxonomic or functional similarity of two or more biotas over a specified time interval. The study of biotic homogenization is a young and rapidly emerging research area in the budding field of conservation biogeography, and this paper aims to synthesize our current knowledge of this process and advocate a more systematic approach to its investigation. Methods, Based on a comprehensive examination of the primary literature this paper reviews the process of biotic homogenization, including its definition, quantification, underlying ecological mechanisms, environmental drivers, the empirical evidence for different taxonomic groups, and the potential ecological and evolutionary implications. Important gaps in our knowledge are then identified, and areas of new research that show the greatest promise for advancing our current thinking on biotic homogenization are highlighted. Results, Current knowledge of the patterns, mechanisms and implications of biotic homogenization is highly variable across taxonomic groups, but in general is incomplete. Quantitative estimates are almost exclusively limited to freshwater fishes and plants in the United States, and the principal mechanisms and drivers of homogenization remain elusive. To date research has focused on taxonomic homogenization, and genetic and functional homogenization has received inadequate attention. Trends over the past decade, however, suggest that biotic homogenization is emerging as a topic of greater research interest. Main conclusions, My investigation revealed a number of important knowledge gaps and priority research needs in the science of biotic homogenization. Future studies should examine the homogenization process for different community properties (species occurrence and abundance) at multiple spatial and temporal scales, with careful attention paid to the various biological mechanisms (invasions vs. extinctions) and environmental drivers (environmental alteration vs. biotic interactions) involved. Perhaps most importantly, this research should recognize that there are multiple possible outcomes resulting from the accumulation of species invasions and extinctions, including biotic differentiation whereby genetic, taxonomic or functional similarity of biotas decreases over time. [source]