Connexin Isoforms (connexin + isoform)

Distribution by Scientific Domains


Selected Abstracts


Cloning and functional characterization of a novel connexin expressed in somites of Xenopus laevis

DEVELOPMENTAL DYNAMICS, Issue 3 2005
Teun P. De Boer
Abstract Connexin-containing gap junctions play an essential role in vertebrate development. More than 20 connexin isoforms have been identified in mammals. However, the number identified in Xenopus trails with only six isoforms described. Here, identification of a new connexin isoform from Xenopus laevis is described. Connexin40.4 was found by screening expressed sequence tag databases and carrying out polymerase chain reaction on genomic DNA. This new connexin has limited amino acid identity with mammalian (<50%) connexins, but conservation is higher (,62%) with fish. During Xenopus laevis development, connexin40.4 was first expressed after the mid-blastula transition. There was prominent expression in the presomitic paraxial mesoderm and later in the developing somites. In adult frogs, expression was detected in kidney and stomach as well as in brain, heart, and skeletal muscle. Ectopic expression of connexin40.4 in HEK293 cells, resulted in formation of gap junction like structures at the cell interfaces. Similar ectopic expression in neural N2A cells resulted in functional electrical coupling, displaying mild, asymmetric voltage dependence. We thus cloned a novel connexin from Xenopus laevis, strongly expressed in developing somites, with no apparent orthologue in mammals. Developmental Dynamics 233:864,871, 2005. © 2005 Wiley-Liss, Inc. [source]


Radiation-induced bystander effects in malignant trophoblast cells are independent from gap junctional communication

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2008
Ferya Banaz-Ya
Abstract It is controversially discussed that irradiation induces bystander effects via gap junction channels and/or diffusible cellular factors such as nitric oxide or cytokines excreted from the cells into the environment. But up to now the molecular mechanism leading to a bystander response is not well understood. To discriminate between both mechanisms of bystander response, (i) mediated by gap junctional communication and/or (ii) mediated by diffusible molecules, we used non-communicating Jeg3 malignant trophoblast cells transfected with inducible gap junction proteins, connexin43 and connexin26, respectively, based on the Tet-On system. We co-cultivated X-ray irradiated and non-irradiated bystander Jeg3 cells for 4 h, separated both cell populations by flow cytometry and evaluated the expression of activated p53 by Western blot analysis. The experimental design was proven with communicating versus non-communicating Jeg3 cells. Interestingly, our results revealed a bystander effect which was independent from gap junctional communication properties and the connexin isoform expressed. Therefore, it seems more likely that the bystander effect is not mediated via gap junction channels but rather by paracrine mechanisms via excreted molecules in Jeg3 cells. J. Cell. Biochem. 103: 149,161, 2008. © 2007 Wiley-Liss, Inc. [source]


Cloning and functional characterization of a novel connexin expressed in somites of Xenopus laevis

DEVELOPMENTAL DYNAMICS, Issue 3 2005
Teun P. De Boer
Abstract Connexin-containing gap junctions play an essential role in vertebrate development. More than 20 connexin isoforms have been identified in mammals. However, the number identified in Xenopus trails with only six isoforms described. Here, identification of a new connexin isoform from Xenopus laevis is described. Connexin40.4 was found by screening expressed sequence tag databases and carrying out polymerase chain reaction on genomic DNA. This new connexin has limited amino acid identity with mammalian (<50%) connexins, but conservation is higher (,62%) with fish. During Xenopus laevis development, connexin40.4 was first expressed after the mid-blastula transition. There was prominent expression in the presomitic paraxial mesoderm and later in the developing somites. In adult frogs, expression was detected in kidney and stomach as well as in brain, heart, and skeletal muscle. Ectopic expression of connexin40.4 in HEK293 cells, resulted in formation of gap junction like structures at the cell interfaces. Similar ectopic expression in neural N2A cells resulted in functional electrical coupling, displaying mild, asymmetric voltage dependence. We thus cloned a novel connexin from Xenopus laevis, strongly expressed in developing somites, with no apparent orthologue in mammals. Developmental Dynamics 233:864,871, 2005. © 2005 Wiley-Liss, Inc. [source]


Gap junction remodeling and cardiac arrhythmogenesis: cause or coincidence?

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 4 2001
Nicholas J. Severs
Abstract Gap junctions, clusters of transmembrane channels that link adjoining cells, mediate myocyte-to-myocyte electrical coupling and communication. The component proteins of gap junction channels are termed connexins and, in in vitro expression systems, gap-junctional channels composed of different connexin types exhibit different biophysical properties. In common with other tissues, the heart expresses multiple connexin isoforms. Spatially defined patterns of expression of three connexin isoforms - connexin43, connexin40 and connexin45 - form the cell-to-cell conduction pathways responsible for the orderly spread of current flow that governs the normal cardiac rhythm. Remodeling of gap junction organization and connexin expression is a common feature of human heart disease conditions in which there is an arrhythmic tendency. This remodeling may take the form of disturbances in the distribution of gap junctions and/or quantitative alterations in connexin expression, notably reduced ventricular connexin43 levels. The idea that such changes may contribute to the development of a pro-arrhythmic substrate in the diseased heart has gained ground over the last decade. Recent studies using transgenic mice models have raised new opportunities to explore the significance of gap junction remodeling in the diseased heart. [source]


Independence of Connexin Expression and Vasomotor Conduction from Sympathetic Innervation in Hamster Feed Arteries

MICROCIRCULATION, Issue 5 2004
ROBIN C. LOOFT-WILSON
ABSTRACT Objective: Vasomotor responses can travel along the wall of resistance microvessels by two distinct mechanisms: cell-to-cell conduction through gap junctions or the release of neurotransmitter along perivascular nerves. It is unknown whether vascular innervation influences the expression of connexin molecules which comprise gap junctions, or the conduction of vasomotor responses. In feed arteries of the hamster retractor muscle (RFA), the authors tested whether sympathetic denervation would alter the expression of connexin isoforms and the conduction of vasomotor responses. Methods: Using intact vessels with sympathetic innervation and those 7,8 days following denervation surgery, mRNA expression was quantified using real-time PCR, cellular localization of Cx protein was characterized using immunohistochemistry, and vasomotor responses to dilator and constrictor stimuli were evaluated in isolated pressurized RFA. Results: Connexin protein localization and mRNA expression were similar between innervated and denervated vessels. mRNA levels were Cx43 = Cx37 > Cx45 , Cx40. Vasodilation to acetylcholine conducted ,2000 , m along innervated and denervated vessels, as did the biphasic conduction of vasoconstriction and vasodilation in response to KCl. Vasoconstriction to phenylephrine conducted < 500 , m and was attenuated (p < .05) in denervated vessels. Conclusions: The profile of connexin expression and the conduction of vasomotor responses are largely independent of sympathetic innervation in feed arteries of the hamster retractor muscle (RFA). [source]


Changes in gap junctional connexin isoforms during prostate cancer progression

THE PROSTATE, Issue 1 2006
Amanda W. Tate
Abstract BACKGROUND Connexins have their traditional function as part of gap junction (GJ) structures, but have recently been shown to have GJ-independent roles. Although GJs and their connexin subunits are thought to be down-regulated in cancer, depending on the connexin examined, many times the expression level is preserved or even increased. This is further apparent by the importance of GJs in "by-stander effects" of radiation and viral targeting treatments. METHODS We surveyed connexin isoforms in prostate cancer cell lines and tissue with RT-PCR and immunohistochemistry. Upon modulating GJ function, we observed prostate epithelial cell behaviors. RESULTS Advanced cells within PC-3 and LNCaP prostate cancer progression models exhibit elevated connexin 26 (Cx26) levels,a trend validated in clinical samples. When GJs were inhibited, adhesion was not affected, but invasion and migration were strikingly decreased. A link between the expression of Cx26 and integrin adhesion-linked functions are suggested by Cx26's direct interaction with focal adhesion kinase (FAK). CONCLUSIONS These results suggest a novel mechanism for adhesion regulation by a GJ-independent Cx26 function that correlates with prostate disease progression. The increased Cx26 expression during prostate cancer progression plays a role in adhesion regulation possibly through its interaction with FAK. © 2005 Wiley-Liss, Inc. [source]