Home About us Contact | |||
Confocal Immunofluorescence Microscopy (confocal + immunofluorescence_microscopy)
Selected AbstractsExpression of GITR ligand abrogates immunosuppressive function of ocular tissue and differentially modulates inflammatory cytokines and chemokinesEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 8 2006Sankaranarayana Abstract The glucocorticoid-induced TNF-related receptor ligand (GITRL) was previously shown to be constitutively expressed at low levels in human eye, including retinal pigment epithelial (RPE) cells. By expressing enhanced yellow fluorescent protein-tagged human GITRL in human RPE cells, we investigated the significance of expression of GITRL on human ocular tissue. Confocal immunofluorescence microscopy and flow cytometry confirmed the surface expression of GITRL on RPE cells. However, a soluble form of GITRL was also detected. Remarkably, expression of GITRL on the RPE cells abrogated RPE-mediated immunosuppression of CD3+ T cells, implicated as a possible mechanism for ocular immune privilege. This abrogation of immunosuppression by GITRL-RPE was dependent on GITR-GITRL interaction and could not be mimicked by anti-CD28 antibody. Analysis of cytokine profiles revealed high level of TGF-beta during the immunosuppression by RPE cells while expression of GITRL abrogated the RPE cell-induced TGF-beta secretion. Expression of GITRL also stimulates secretion of an array of proinflammatory cytokines/chemokines from T cells. GITR-GITRL interaction provides a unique proinflammatory costimulation that may signal through a different pathway than that of CD28-B7 costimulation. This study implicated that GITRL could be a potential candidate for regulation of the ocular immune privilege and the balance between immune privilege and inflammation. [source] Glucagon induces the plasma membrane insertion of functional aquaporin-8 water channels in isolated rat hepatocytesHEPATOLOGY, Issue 6 2003Sergio A. Gradilone Although glucagon is known to stimulate the cyclic adenosine monophosphate (cAMP)-mediated hepatocyte bile secretion, the precise mechanisms accounting for this choleretic effect are unknown. We recently reported that hepatocytes express the water channel aquaporin-8 (AQP8), which is located primarily in intracellular vesicles, and its relocalization to plasma membranes can be induced with dibutyryl cAMP. In this study, we tested the hypothesis that glucagon induces the trafficking of AQP8 to the hepatocyte plasma membrane and thus increases membrane water permeability. Immunoblotting analysis in subcellular fractions from isolated rat hepatocytes indicated that glucagon caused a significant, dose-dependent increase in the amount of AQP8 in plasma membranes (e.g., 102% with 1 ,mol/L glucagon) and a simultaneous decrease in intracellular membranes (e.g., 38% with 1 ,mol/L glucagon). Confocal immunofluorescence microscopy in cultured hepatocytes confirmed the glucagon-induced redistribution of AQP8 from intracellular vesicles to plasma membrane. Polarized hepatocyte couplets showed that this redistribution was specifically to the canalicular domain. Glucagon also significantly increased hepatocyte membrane water permeability by about 70%, which was inhibited by the water channel blocker dimethyl sulfoxide (DMSO). The inhibitors of protein kinase A, H-89, and PKI, as well as the microtubule blocker colchicine, prevented the glucagon effect on both AQP8 redistribution to hepatocyte surface and cell membrane water permeability. In conclusion, our data suggest that glucagon induces the protein kinase A and microtubule-dependent translocation of AQP8 water channels to the hepatocyte canalicular plasma membrane, which in turn leads to an increase in membrane water permeability. These findings provide evidence supporting the molecular mechanisms of glucagon-induced hepatocyte bile secretion. [source] Differentiation-dependent association of phosphorylated extracellular signal-regulated kinase with the chromatin of osteoblast-related genesJOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2010Yan Li Abstract The ERK/MAP kinase pathway is an important regulator of gene expression and differentiation in postmitotic cells. To understand how this pathway controls gene expression in bone, we examined the subnuclear localization of P-ERK in differentiating osteoblasts. Induction of differentiation was accompanied by increased ERK phosphorylation and expression of osteoblast-related genes, including osteocalcin (Bglap2) and bone sialoprotein (Ibsp). Confocal immunofluorescence microscopy revealed that P-ERK colocalized with the RUNX2 transcription factor in the nuclei of differentiating cells. Interestingly, a portion of this nuclear P-ERK was directly bound to the proximal promoter regions of Bglap2 and Ibsp. Furthermore, the level of P-ERK binding to chromatin increased with differentiation, whereas RUNX2 binding remained relatively constant. The P-ERK-chromatin interaction was seen only in RUNX2-positive cells, required intact RUNX2-selective enhancer sequences, and was blocked with MAPK inhibition. These studies show for the first time that RUNX2 specifically targets P-ERK to the chromatin of osteoblast-related genes, where it may phosphorylate multiple substrates, including RUNX2, resulting in altered chromatin structure and gene expression. © 2010 American Society for Bone and Mineral Research [source] Ethanol enhancement of cocaine- and amphetamine-regulated transcript mRNA and peptide expression in the nucleus accumbensJOURNAL OF NEUROCHEMISTRY, Issue 2 2006Armando Salinas Abstract Cocaine- and amphetamine-regulated transcript (CART) is a peptide neurotransmitter that has been implicated in drug reward and reinforcement. CART mRNA and peptide expression are highly concentrated in several compartments of the mesolimbic reward pathway. Several lines of evidence suggest that CART peptides may contribute to rewarding behaviors and the addiction liability of psychostimulants; however, there are no reports of basic work concerning CART in relation to alcohol and mechanisms of alcohol dependence development. Therefore, in this study we investigated the response of CART transcript and peptide to acute ethanol administration in vivo. Rats were administered ethanol (1 g/kg or 3.5 g/kg, 1 h, ip) and CART expression was measured by RT-PCR in the nucleus accumbens (NAcc). Ethanol (3.5 g/kg) increased CART transcription markedly. The interactions of dopamine on ethanol-induced CART expression were further evaluated pharmacologically using D1 and D2/D3 receptor antagonists. Both SCH 23390 (0.25 mg/kg) or raclopride (0.2 mg/kg) pre-treatment significantly suppressed ethanol-enhancement of CART mRNA transcription. Confocal immunofluorescence microscopy revealed that CART peptide immunoreactivity was also enhanced in both the core and the shell of the NAcc by ethanol administration. These findings demonstrate that CART mRNA and peptide expression are responsive to acute ethanol administrated in vivo and suggests that CART peptides may be important in regulating the rewarding and reinforcing properties of ethanol. [source] Contribution of Kir3.1, Kir3.2A and Kir3.2C subunits to native G protein-gated inwardly rectifying potassium currents in cultured hippocampal neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2003Joanne L. Leaney Abstract G protein-gated inwardly rectifying potassium (GIRK) channels are found in neurons, atrial myocytes and neuroendocrine cells. A characteristic feature is their activation by stimulation of Gi/o -coupled receptors. In central neurons, for example, they are activated by adenosine and GABA and, as such, they play an important role in neurotransmitter-mediated regulation of membrane excitability. The channels are tetrameric assemblies of Kir3.x subunits (Kir3.1,3.4 plus splice variants). In this study I have attempted to identify the channel subunits which contribute to the native GIRK current recorded from primary cultured rat hippocampal pyramidal neurons. Reverse transcriptase,polymerase chain reaction revealed the expression of mRNA for Kir3.1, 3.2A, 3.2C and 3.3 subunits and confocal immunofluorescence microscopy was used to investigate their expression patterns. Diffuse staining was observed on both cell somata and dendrites for Kir3.1 and Kir3.2A yet that for Kir3.2C was weaker and punctate. Whole-cell patch clamp recordings were used to record GIRK currents from hippocampal pyramidal neurons which were identified on the basis of inward rectification, dependence of reversal potential on external potassium concentration and sensitivity to tertiapin. The GIRK currents were enhanced by the stimulation of a number of Gi/o -coupled receptors and were inhibited by pertussis toxin. In order to ascertain which Kir3.x subunits were responsible for the native GIRK current I compared the properties with those of the cloned Kir3.1 + 3.2A and Kir3.1 + 3.2C channels heterologously expressed in HEK293 cells. [source] Novel biphasic traffic of endocytosed EGF to recycling and degradative compartments in lacrimal gland acinar cellsJOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2004Jiansong Xie The purpose of this study was to delineate the traffic patterns of EGF and EGF receptors (EGFR) in primary cultured acinar epithelial cells from rabbit lacrimal glands. Uptake of [125I]-EGF exhibited saturable and non-saturable, temperature-dependent components, suggesting both receptor-mediated and fluid phase endocytosis. Accumulation of [125I] was time-dependent over a 120-min period, but the content of intact [125I]-EGF decreased after reaching a maximum at 20 min. Analytical fractionation by sorbitol density gradient centrifugation and phase partitioning indicated that within 20 min at 37°C [125I] reached an early endosome, basal,lateral recycling endosome, pre-lysosome, and lysosome. Small components of the label also appeared to reach the Golgi complex and trans -Golgi network. Intact [125I]-EGF initially accumulated in the recycling endosome; the content in the recycling endosome subsequently decreased, and by 120 min increased amounts of [125I]-labeled degradation products appeared in the pre-lysosomes and lysosomes. Confocal microscopy imaging of FITC-EGF and LysoTrackerRed revealed FITC enriched in a dispersed system of non-acidic compartments at 20 min and in acidic compartments at 120 min. Both confocal immunofluorescence microscopy and analytical fractionation indicated that the intracellular EGFR pool was much larger than the plasma membrane-expressed pool at all times. Cells loaded with [125I]-EGF released a mixture of intact EGF and [125I]-labeled degradation products. The observations indicate that in lacrimal acinar cells, EGFR and EGF,EGFR complexes continually traffic between the plasma membranes and a system of endomembrane compartments; EGF-stimulation generates time-dependent signals that initially decrease, then increase, EGF,EGFR traffic to degradative compartments. J. Cell. Physiol. 199: 108,125, 2004© 2003 Wiley-Liss, Inc. [source] Intracellular replication of Salmonella typhimurium strains in specific subsets of splenic macrophages in vivoCELLULAR MICROBIOLOGY, Issue 9 2001Suzana P. Salcedo We used flow cytometry and confocal immunofluorescence microscopy to study the localization of Salmonella typhimurium in spleens of infected mice. Animals were inoculated intragastrically or intraperitoneally with S. typhimurium strains, constitutively expressing green fluorescent protein. Independently of the route of inoculation, most bacteria were found in intracellular locations 3 days after inoculation. Using a panel of antibodies that bound to cells of different lineages, including mononuclear phagocyte subsets, we have shown that the vast majority of S. typhimurium bacteria reside within macrophages. Bacteria were located in red pulp and marginal zone macrophages, but very few were found in the marginal metallophilic macrophage population. We have demonstrated that the Salmonella SPI-2 type III secretion system is required for replication within splenic macrophages, and that sifA, mutant bacteria are found within the cytosol of these cells. These results confirm that SifA and SPI-2 are involved in maintenance of the vacuolar membrane and intracellular replication in vivo. [source] A mechanism of benefit of soy genistein in asthma: inhibition of eosinophil p38-dependent leukotriene synthesisCLINICAL & EXPERIMENTAL ALLERGY, Issue 1 2008R. Kalhan Summary Background Dietary intake of the soy isoflavone genistein is associated with reduced severity of asthma, but the mechanisms responsible for this effect are unknown. Objective To determine whether genistein blocks eosinophil leukotriene C4 (LTC4) synthesis and to evaluate the mechanism of this effect, and to assess the impact of a 4-week period of soy isoflavone dietary supplementation on indices of eosinophilic inflammation in asthma patients. Methods Human peripheral blood eosinophils were stimulated in the absence and presence of genistein, and LTC4 synthesis was measured. 5-lipoxygenase (5-LO) nuclear membrane translocation was assessed by confocal immunofluorescence microscopy. Mitogen-activated protein (MAP) kinase activation was determined by immunoblot. Human subjects with mild-to-moderate persistent asthma and minimal or no soy intake were given a soy isoflavone supplement (100 mg/day) for 4 weeks. The fraction of exhaled nitric oxide (FENO) and ex vivo eosinophil LTC4 production were assessed before and after the soy isoflavone treatment period. Results Genistein inhibited eosinophil LTC4 synthesis (IC50 80 nm), blocked phosphorylation of p38 MAP kinase and its downstream target MAPKAP-2, and reduced translocation of 5-LO to the nuclear membrane. In patients with asthma, following 4 weeks of dietary soy isoflavone supplementation, ex vivo eosinophil LTC4 synthesis decreased by 33% (N=11, P=0.02) and FENO decreased by 18% (N=13, P=0.03). Conclusion At physiologically relevant concentrations, genistein inhibits eosinophil LTC4 synthesis in vitro, probably by blocking p38- and MAPKAP-2-dependent activation of 5-LO. In asthma patients, dietary soy isoflavone supplementation reduces eosinophil LTC4 synthesis and eosinophilic airway inflammation. These results support a potential role for soy isoflavones in the treatment of asthma. [source] |